Spaces:
Runtime error
Runtime error
File size: 11,179 Bytes
ab85cf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
from utils import *
#### SVD
from dragnuwa.svd.modules.diffusionmodules.video_model_flow import VideoUNet_flow, VideoResBlock_Embed
from dragnuwa.svd.modules.diffusionmodules.denoiser import Denoiser
from dragnuwa.svd.modules.diffusionmodules.denoiser_scaling import VScalingWithEDMcNoise
from dragnuwa.svd.modules.encoders.modules import *
from dragnuwa.svd.models.autoencoder import AutoencodingEngine
from dragnuwa.svd.modules.diffusionmodules.wrappers import OpenAIWrapper
from dragnuwa.svd.modules.diffusionmodules.sampling import EulerEDMSampler
from dragnuwa.lora import inject_trainable_lora, inject_trainable_lora_extended, extract_lora_ups_down, _find_modules
def get_gaussian_kernel(kernel_size, sigma, channels):
print('parameters of gaussian kernel: kernel_size: {}, sigma: {}, channels: {}'.format(kernel_size, sigma, channels))
x_coord = torch.arange(kernel_size)
x_grid = x_coord.repeat(kernel_size).view(kernel_size, kernel_size)
y_grid = x_grid.t()
xy_grid = torch.stack([x_grid, y_grid], dim=-1).float()
mean = (kernel_size - 1)/2.
variance = sigma**2.
gaussian_kernel = torch.exp(
-torch.sum((xy_grid - mean)**2., dim=-1) /\
(2*variance)
)
gaussian_kernel = gaussian_kernel.view(1, 1, kernel_size, kernel_size)
gaussian_kernel = gaussian_kernel.repeat(channels, 1, 1, 1)
gaussian_filter = nn.Conv2d(in_channels=channels, out_channels=channels,kernel_size=kernel_size, groups=channels, bias=False, padding=kernel_size//2)
gaussian_filter.weight.data = gaussian_kernel
gaussian_filter.weight.requires_grad = False
return gaussian_filter
def inject_lora(use_lora, model, replace_modules, is_extended=False, dropout=0.0, r=16):
injector = (
inject_trainable_lora if not is_extended
else
inject_trainable_lora_extended
)
params = None
negation = None
if use_lora:
REPLACE_MODULES = replace_modules
injector_args = {
"model": model,
"target_replace_module": REPLACE_MODULES,
"r": r
}
if not is_extended: injector_args['dropout_p'] = dropout
params, negation = injector(**injector_args)
for _up, _down in extract_lora_ups_down(
model,
target_replace_module=REPLACE_MODULES):
if all(x is not None for x in [_up, _down]):
print(f"Lora successfully injected into {model.__class__.__name__}.")
break
return params, negation
class Args:
### basic
fps = 4
height = 320
width = 576
### lora
unet_lora_rank = 32
### gaussian filter parameters
kernel_size = 199
sigma = 20
# model
denoiser_config = {
'scaling_config':{
'target': 'dragnuwa.svd.modules.diffusionmodules.denoiser_scaling.VScalingWithEDMcNoise',
}
}
network_config = {
'adm_in_channels': 768, 'num_classes': 'sequential', 'use_checkpoint': True, 'in_channels': 8, 'out_channels': 4, 'model_channels': 320, 'attention_resolutions': [4, 2, 1], 'num_res_blocks': 2, 'channel_mult': [1, 2, 4, 4], 'num_head_channels': 64, 'use_linear_in_transformer': True, 'transformer_depth': 1, 'context_dim': 1024, 'spatial_transformer_attn_type': 'softmax-xformers', 'extra_ff_mix_layer': True, 'use_spatial_context': True, 'merge_strategy': 'learned_with_images', 'video_kernel_size': [3, 1, 1], 'flow_dim_scale': 1,
}
conditioner_emb_models = [
{'is_trainable': False,
'input_key': 'cond_frames_without_noise', # crossattn
'ucg_rate': 0.1,
'target': 'dragnuwa.svd.modules.encoders.modules.FrozenOpenCLIPImagePredictionEmbedder',
'params':{
'n_cond_frames': 1,
'n_copies': 1,
'open_clip_embedding_config': {
'target': 'dragnuwa.svd.modules.encoders.modules.FrozenOpenCLIPImageEmbedder',
'params': {
'freeze':True,
}
}
}
},
{'input_key': 'fps_id', # vector
'is_trainable': False,
'ucg_rate': 0.1,
'target': 'dragnuwa.svd.modules.encoders.modules.ConcatTimestepEmbedderND',
'params': {
'outdim': 256,
}
},
{'input_key': 'motion_bucket_id', # vector
'ucg_rate': 0.1,
'is_trainable': False,
'target': 'dragnuwa.svd.modules.encoders.modules.ConcatTimestepEmbedderND',
'params': {
'outdim': 256,
}
},
{'input_key': 'cond_frames', # concat
'is_trainable': False,
'ucg_rate': 0.1,
'target': 'dragnuwa.svd.modules.encoders.modules.VideoPredictionEmbedderWithEncoder',
'params': {
'en_and_decode_n_samples_a_time': 1,
'disable_encoder_autocast': True,
'n_cond_frames': 1,
'n_copies': 1,
'is_ae': True,
'encoder_config': {
'target': 'dragnuwa.svd.models.autoencoder.AutoencoderKLModeOnly',
'params': {
'embed_dim': 4,
'monitor': 'val/rec_loss',
'ddconfig': {
'attn_type': 'vanilla-xformers',
'double_z': True,
'z_channels': 4,
'resolution': 256,
'in_channels': 3,
'out_ch': 3,
'ch': 128,
'ch_mult': [1, 2, 4, 4],
'num_res_blocks': 2,
'attn_resolutions': [],
'dropout': 0.0,
},
'lossconfig': {
'target': 'torch.nn.Identity',
}
}
}
}
},
{'input_key': 'cond_aug', # vector
'ucg_rate': 0.1,
'is_trainable': False,
'target': 'dragnuwa.svd.modules.encoders.modules.ConcatTimestepEmbedderND',
'params': {
'outdim': 256,
}
}
]
first_stage_config = {
'loss_config': {'target': 'torch.nn.Identity'},
'regularizer_config': {'target': 'dragnuwa.svd.modules.autoencoding.regularizers.DiagonalGaussianRegularizer'},
'encoder_config':{'target': 'dragnuwa.svd.modules.diffusionmodules.model.Encoder',
'params': { 'attn_type':'vanilla',
'double_z': True,
'z_channels': 4,
'resolution': 256,
'in_channels': 3,
'out_ch': 3,
'ch': 128,
'ch_mult': [1, 2, 4, 4],
'num_res_blocks': 2,
'attn_resolutions': [],
'dropout': 0.0,
}
},
'decoder_config':{'target': 'dragnuwa.svd.modules.autoencoding.temporal_ae.VideoDecoder',
'params': {'attn_type': 'vanilla',
'double_z': True,
'z_channels': 4,
'resolution': 256,
'in_channels': 3,
'out_ch': 3,
'ch': 128,
'ch_mult': [1, 2, 4, 4],
'num_res_blocks': 2,
'attn_resolutions': [],
'dropout': 0.0,
'video_kernel_size': [3, 1, 1],
}
},
}
sampler_config = {
'discretization_config': {'target': 'dragnuwa.svd.modules.diffusionmodules.discretizer.EDMDiscretization',
'params': {'sigma_max': 700.0,},
},
'guider_config': {'target': 'dragnuwa.svd.modules.diffusionmodules.guiders.LinearPredictionGuider',
'params': {'max_scale':2.5,
'min_scale':1.0,
'num_frames':14},
},
'num_steps': 25,
}
scale_factor = 0.18215
num_frames = 14
### others
seed = 42
os.environ["PL_GLOBAL_SEED"] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
args = Args()
def quick_freeze(model):
for name, param in model.named_parameters():
param.requires_grad = False
return model
class Net(nn.Module):
def __init__(self, args):
super(Net, self).__init__()
self.args = args
self.device = 'cpu'
### unet
model = VideoUNet_flow(**args.network_config)
self.model = OpenAIWrapper(model)
### denoiser and sampler
self.denoiser = Denoiser(**args.denoiser_config)
self.sampler = EulerEDMSampler(**args.sampler_config)
### conditioner
self.conditioner = GeneralConditioner(args.conditioner_emb_models)
### first stage model
self.first_stage_model = AutoencodingEngine(**args.first_stage_config).eval()
self.scale_factor = args.scale_factor
self.en_and_decode_n_samples_a_time = 1 # decode 1 frame each time to save GPU memory
self.num_frames = args.num_frames
self.guassian_filter = quick_freeze(get_gaussian_kernel(kernel_size=args.kernel_size, sigma=args.sigma, channels=2))
unet_lora_params, unet_negation = inject_lora(
True, self, ['OpenAIWrapper'], is_extended=False, r=args.unet_lora_rank
)
def to(self, *args, **kwargs):
model_converted = super().to(*args, **kwargs)
self.device = next(self.parameters()).device
self.sampler.device = self.device
for embedder in self.conditioner.embedders:
if hasattr(embedder, "device"):
embedder.device = self.device
return model_converted
def train(self, *args):
super().train(*args)
self.conditioner.eval()
self.first_stage_model.eval()
def apply_gaussian_filter_on_drag(self, drag):
b, l, h, w, c = drag.shape
drag = rearrange(drag, 'b l h w c -> (b l) c h w')
drag = self.guassian_filter(drag)
drag = rearrange(drag, '(b l) c h w -> b l h w c', b=b)
return drag
@torch.no_grad()
def decode_first_stage(self, z):
z = 1.0 / self.scale_factor * z
n_samples = self.en_and_decode_n_samples_a_time # 1
n_rounds = math.ceil(z.shape[0] / n_samples)
all_out = []
for n in range(n_rounds):
kwargs = {"timesteps": len(z[n * n_samples : (n + 1) * n_samples])}
out = self.first_stage_model.decode(
z[n * n_samples : (n + 1) * n_samples], **kwargs
)
all_out.append(out)
out = torch.cat(all_out, dim=0)
return out |