DragNUWA / app.py
LanHarmony's picture
sync
ceaa1a3
raw
history blame
19.4 kB
import gradio as gr
import numpy as np
import cv2
from PIL import Image, ImageFilter
import uuid
from scipy.interpolate import interp1d, PchipInterpolator
import torchvision
from utils import *
output_dir = "outputs"
ensure_dirname(output_dir)
def interpolate_trajectory(points, n_points):
x = [point[0] for point in points]
y = [point[1] for point in points]
t = np.linspace(0, 1, len(points))
# fx = interp1d(t, x, kind='cubic')
# fy = interp1d(t, y, kind='cubic')
fx = PchipInterpolator(t, x)
fy = PchipInterpolator(t, y)
new_t = np.linspace(0, 1, n_points)
new_x = fx(new_t)
new_y = fy(new_t)
new_points = list(zip(new_x, new_y))
return new_points
def visualize_drag_v2(background_image_path, splited_tracks, width, height):
trajectory_maps = []
background_image = Image.open(background_image_path).convert('RGBA')
background_image = background_image.resize((width, height))
w, h = background_image.size
transparent_background = np.array(background_image)
transparent_background[:, :, -1] = 128
transparent_background = Image.fromarray(transparent_background)
# Create a transparent layer with the same size as the background image
transparent_layer = np.zeros((h, w, 4))
for splited_track in splited_tracks:
if len(splited_track) > 1:
splited_track = interpolate_trajectory(splited_track, 16)
splited_track = splited_track[:16]
for i in range(len(splited_track)-1):
start_point = (int(splited_track[i][0]), int(splited_track[i][1]))
end_point = (int(splited_track[i+1][0]), int(splited_track[i+1][1]))
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = np.sqrt(vx**2 + vy**2)
if i == len(splited_track)-2:
cv2.arrowedLine(transparent_layer, start_point, end_point, (255, 0, 0, 192), 2, tipLength=8 / arrow_length)
else:
cv2.line(transparent_layer, start_point, end_point, (255, 0, 0, 192), 2)
else:
cv2.circle(transparent_layer, (int(splited_track[0][0]), int(splited_track[0][1])), 5, (255, 0, 0, 192), -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
trajectory_maps.append(trajectory_map)
return trajectory_maps, transparent_layer
class Drag:
def __init__(self, device, model_path, cfg_path, height, width, model_length):
self.device = device
cf = import_filename(cfg_path)
Net, args = cf.Net, cf.args
drag_nuwa_net = Net(args)
state_dict = file2data(model_path, map_location='cpu')
adaptively_load_state_dict(drag_nuwa_net, state_dict)
drag_nuwa_net.eval()
drag_nuwa_net.to(device)
# drag_nuwa_net.half()
self.drag_nuwa_net = drag_nuwa_net
self.height = height
self.width = width
_, model_step, _ = split_filename(model_path)
self.ouput_prefix = f'{model_step}_{width}X{height}'
self.model_length = model_length
@torch.no_grad()
def forward_sample(self, input_drag, input_first_frame, motion_bucket_id, outputs=dict()):
device = self.device
b, l, h, w, c = input_drag.size()
drag = self.drag_nuwa_net.apply_gaussian_filter_on_drag(input_drag)
drag = torch.cat([torch.zeros_like(drag[:, 0]).unsqueeze(1), drag], dim=1) # pad the first frame with zero flow
drag = rearrange(drag, 'b l h w c -> b l c h w')
input_conditioner = dict()
input_conditioner['cond_frames_without_noise'] = input_first_frame
input_conditioner['cond_frames'] = (input_first_frame + 0.02 * torch.randn_like(input_first_frame))
input_conditioner['motion_bucket_id'] = torch.tensor([motion_bucket_id]).to(drag.device).repeat(b * (l+1))
input_conditioner['fps_id'] = torch.tensor([self.drag_nuwa_net.args.fps]).to(drag.device).repeat(b * (l+1))
input_conditioner['cond_aug'] = torch.tensor([0.02]).to(drag.device).repeat(b * (l+1))
input_conditioner_uc = {}
for key in input_conditioner.keys():
if key not in input_conditioner_uc and isinstance(input_conditioner[key], torch.Tensor):
input_conditioner_uc[key] = input_conditioner[key].clone()
c, uc = self.drag_nuwa_net.conditioner.get_unconditional_conditioning(
input_conditioner,
batch_uc=input_conditioner_uc,
force_uc_zero_embeddings=[
"cond_frames",
"cond_frames_without_noise",
],
)
for k in ["crossattn", "concat"]:
uc[k] = repeat(uc[k], "b ... -> b t ...", t=self.drag_nuwa_net.num_frames)
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...")
c[k] = repeat(c[k], "b ... -> b t ...", t=self.drag_nuwa_net.num_frames)
c[k] = rearrange(c[k], "b t ... -> (b t) ...")
H, W = input_conditioner['cond_frames_without_noise'].shape[2:]
shape = (self.drag_nuwa_net.num_frames, 4, H // 8, W // 8)
randn = torch.randn(shape).to(self.device)
additional_model_inputs = {}
additional_model_inputs["image_only_indicator"] = torch.zeros(
2, self.drag_nuwa_net.num_frames
).to(self.device)
additional_model_inputs["num_video_frames"] = self.drag_nuwa_net.num_frames
additional_model_inputs["flow"] = drag.repeat(2, 1, 1, 1, 1) # c and uc
def denoiser(input, sigma, c):
return self.drag_nuwa_net.denoiser(self.drag_nuwa_net.model, input, sigma, c, **additional_model_inputs)
samples_z = self.drag_nuwa_net.sampler(denoiser, randn, cond=c, uc=uc)
samples = self.drag_nuwa_net.decode_first_stage(samples_z)
outputs['logits_imgs'] = rearrange(samples, '(b l) c h w -> b l c h w', b=b)
return outputs
def run(self, first_frame_path, tracking_points, inference_batch_size, motion_bucket_id):
original_width, original_height=576, 320
input_all_points = tracking_points.constructor_args['value']
resized_all_points = [tuple([tuple([int(e1[0]*self.width/original_width), int(e1[1]*self.height/original_height)]) for e1 in e]) for e in input_all_points]
input_drag = torch.zeros(self.model_length - 1, self.height, self.width, 2)
for splited_track in resized_all_points:
if len(splited_track) == 1: # stationary point
displacement_point = tuple([splited_track[0][0] + 1, splited_track[0][1] + 1])
splited_track = tuple([splited_track[0], displacement_point])
# interpolate the track
splited_track = interpolate_trajectory(splited_track, self.model_length)
splited_track = splited_track[:self.model_length]
if len(splited_track) < self.model_length:
splited_track = splited_track + [splited_track[-1]] * (self.model_length -len(splited_track))
for i in range(self.model_length - 1):
start_point = splited_track[i]
end_point = splited_track[i+1]
input_drag[i][int(start_point[1])][int(start_point[0])][0] = end_point[0] - start_point[0]
input_drag[i][int(start_point[1])][int(start_point[0])][1] = end_point[1] - start_point[1]
dir, base, ext = split_filename(first_frame_path)
id = base.split('_')[-1]
image_pil = image2pil(first_frame_path)
image_pil = image_pil.resize((self.width, self.height), Image.BILINEAR).convert('RGB')
visualized_drag, _ = visualize_drag_v2(first_frame_path, resized_all_points, self.width, self.height)
first_frames_transform = transforms.Compose([
lambda x: Image.fromarray(x),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
outputs = None
ouput_video_list = []
num_inference = 1
for i in tqdm(range(num_inference)):
if not outputs:
first_frames = image2arr(first_frame_path)
first_frames = repeat(first_frames_transform(first_frames), 'c h w -> b c h w', b=inference_batch_size).to(self.device)
else:
first_frames = outputs['logits_imgs'][:, -1]
outputs = self.forward_sample(
repeat(input_drag[i*(self.model_length - 1):(i+1)*(self.model_length - 1)], 'l h w c -> b l h w c', b=inference_batch_size).to(self.device),
first_frames,
motion_bucket_id)
ouput_video_list.append(outputs['logits_imgs'])
for i in range(inference_batch_size):
ouput_tensor = [ouput_video_list[0][i]]
for j in range(num_inference - 1):
ouput_tensor.append(ouput_video_list[j+1][i][1:])
ouput_tensor = torch.cat(ouput_tensor, dim=0)
outputs_path = os.path.join(output_dir, f'output_{i}_{id}.gif')
data2file([transforms.ToPILImage('RGB')(utils.make_grid(e.to(torch.float32).cpu(), normalize=True, range=(-1, 1))) for e in ouput_tensor], outputs_path,
printable=False, duration=1 / 6, override=True)
return visualized_drag[0], outputs_path
with gr.Blocks() as demo:
gr.Markdown("""<h1 align="center">DragNUWA 1.5</h1><br>""")
gr.Markdown("""Demo for <a href='https://arxiv.org/abs/2308.08089'><b>DragNUWA: Fine-grained Control in Video Generation by Integrating Text, Image, and Trajectory</b></a>.<br>
github: <a href='https://github.com/ProjectNUWA/DragNUWA'><b>https://github.com/ProjectNUWA/DragNUWA</b></a>
🔥DragNUWA enables users to manipulate backgrounds or objects within images directly, and the model seamlessly translates these actions into **camera movements** or **object motions**, generating the corresponding video.<br>
🔥DragNUWA 1.5 uses Stable Video Diffusion to animate an image according to specific path.<br>""")
gr.Image(label="DragNUWA", value="assets/DragNUWA1.5/Figure1.gif")
gr.Markdown("""## Usage: <br>
1. Upload an image via the "Upload Image" button.<br>
2. Draw some drags.<br>
2.1. Click "Add Drag" when you want to add a control path.<br>
2.2. You can click several points which forms a path.<br>
2.3. Click "Delete last drag" to delete the whole lastest path.<br>
2.4. Click "Delete last step" to delete the lastest clicked control point.<br>
3. Animate the image according the path with a click on "Run" button. <br>""")
DragNUWA_net = Drag("cuda:0", 'models/drag_nuwa_svd.pth', 'DragNUWA_net.py', 320, 576, 14)
first_frame_path = gr.State()
tracking_points = gr.State([])
def reset_states(first_frame_path, tracking_points):
first_frame_path = gr.State()
tracking_points = gr.State([])
return first_frame_path, tracking_points
def preprocess_image(image):
image_pil = image2pil(image.name)
raw_w, raw_h = image_pil.size
resize_ratio = max(576/raw_w, 320/raw_h)
image_pil = image_pil.resize((int(raw_w * resize_ratio), int(raw_h * resize_ratio)), Image.BILINEAR)
image_pil = transforms.CenterCrop((320, 576))(image_pil.convert('RGB'))
first_frame_path = os.path.join(output_dir, f"first_frame_{str(uuid.uuid4())[:4]}.png")
image_pil.save(first_frame_path)
return first_frame_path, first_frame_path, gr.State([])
def add_drag(tracking_points):
tracking_points.constructor_args['value'].append([])
return tracking_points
def delete_last_drag(tracking_points, first_frame_path):
tracking_points.constructor_args['value'].pop()
transparent_background = Image.open(first_frame_path).convert('RGBA')
w, h = transparent_background.size
transparent_layer = np.zeros((h, w, 4))
for track in tracking_points.constructor_args['value']:
if len(track) > 1:
for i in range(len(track)-1):
start_point = track[i]
end_point = track[i+1]
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = np.sqrt(vx**2 + vy**2)
if i == len(track)-2:
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
else:
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
else:
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
return tracking_points, trajectory_map
def delete_last_step(tracking_points, first_frame_path):
tracking_points.constructor_args['value'][-1].pop()
transparent_background = Image.open(first_frame_path).convert('RGBA')
w, h = transparent_background.size
transparent_layer = np.zeros((h, w, 4))
for track in tracking_points.constructor_args['value']:
if len(track) > 1:
for i in range(len(track)-1):
start_point = track[i]
end_point = track[i+1]
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = np.sqrt(vx**2 + vy**2)
if i == len(track)-2:
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
else:
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
else:
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
return tracking_points, trajectory_map
def add_tracking_points(tracking_points, first_frame_path, evt: gr.SelectData): # SelectData is a subclass of EventData
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
tracking_points.constructor_args['value'][-1].append(evt.index)
transparent_background = Image.open(first_frame_path).convert('RGBA')
w, h = transparent_background.size
transparent_layer = np.zeros((h, w, 4))
for track in tracking_points.constructor_args['value']:
if len(track) > 1:
for i in range(len(track)-1):
start_point = track[i]
end_point = track[i+1]
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = np.sqrt(vx**2 + vy**2)
if i == len(track)-2:
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
else:
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
else:
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
return tracking_points, trajectory_map
with gr.Row():
with gr.Column(scale=1):
image_upload_button = gr.UploadButton(label="Upload Image",file_types=["image"])
add_drag_button = gr.Button(value="Add Drag")
reset_button = gr.Button(value="Reset")
run_button = gr.Button(value="Run")
delete_last_drag_button = gr.Button(value="Delete last drag")
delete_last_step_button = gr.Button(value="Delete last step")
with gr.Column(scale=7):
with gr.Row():
with gr.Column(scale=6):
input_image = gr.Image(label=None,
interactive=True,
height=320,
width=576,)
with gr.Column(scale=6):
output_image = gr.Image(label=None,
height=320,
width=576,)
with gr.Row():
with gr.Column(scale=1):
inference_batch_size = gr.Slider(label='Inference Batch Size',
minimum=1,
maximum=1,
step=1,
value=1)
motion_bucket_id = gr.Slider(label='Motion Bucket',
minimum=1,
maximum=100,
step=1,
value=4)
with gr.Column(scale=5):
output_video = gr.Image(label="Output Video",
height=320,
width=576,)
with gr.Row():
gr.Markdown("""
## Citation
```bibtex
@article{yin2023dragnuwa,
title={Dragnuwa: Fine-grained control in video generation by integrating text, image, and trajectory},
author={Yin, Shengming and Wu, Chenfei and Liang, Jian and Shi, Jie and Li, Houqiang and Ming, Gong and Duan, Nan},
journal={arXiv preprint arXiv:2308.08089},
year={2023}
}
```
""")
image_upload_button.upload(preprocess_image, image_upload_button, [input_image, first_frame_path, tracking_points])
add_drag_button.click(add_drag, tracking_points, tracking_points)
delete_last_drag_button.click(delete_last_drag, [tracking_points, first_frame_path], [tracking_points, input_image])
delete_last_step_button.click(delete_last_step, [tracking_points, first_frame_path], [tracking_points, input_image])
reset_button.click(reset_states, [first_frame_path, tracking_points], [first_frame_path, tracking_points])
input_image.select(add_tracking_points, [tracking_points, first_frame_path], [tracking_points, input_image])
run_button.click(DragNUWA_net.run, [first_frame_path, tracking_points, inference_batch_size, motion_bucket_id], [output_image, output_video])
demo.launch(server_name="0.0.0.0", debug=True)