Spaces:
Runtime error
Runtime error
ResearcherXman
commited on
Commit
•
a6b78fb
1
Parent(s):
760d36d
fix
Browse files- pipeline_stable_diffusion_xl_instantid.py +1087 -369
pipeline_stable_diffusion_xl_instantid.py
CHANGED
@@ -1,408 +1,1126 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import cv2
|
3 |
import math
|
4 |
-
|
5 |
-
import random
|
6 |
import numpy as np
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
import
|
9 |
-
from PIL import Image
|
10 |
|
11 |
-
import diffusers
|
12 |
-
from diffusers.utils import load_image
|
13 |
from diffusers.models import ControlNetModel
|
14 |
|
15 |
-
import
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
from
|
19 |
-
from
|
|
|
20 |
|
21 |
-
import
|
22 |
-
import gradio as gr
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
-
STYLE_NAMES = list(styles.keys())
|
28 |
-
DEFAULT_STYLE_NAME = "Watercolor"
|
29 |
|
30 |
-
#
|
31 |
-
from huggingface_hub import hf_hub_download
|
32 |
-
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
|
33 |
-
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
|
34 |
-
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
|
35 |
|
36 |
-
# Load face encoder
|
37 |
-
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
38 |
-
app.prepare(ctx_id=0, det_size=(640, 640))
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
)
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
72 |
-
|
73 |
-
def remove_tips():
|
74 |
-
return gr.update(visible=False)
|
75 |
-
|
76 |
-
def get_example():
|
77 |
-
case = [
|
78 |
-
[
|
79 |
-
['./examples/yann-lecun_resize.jpg'],
|
80 |
-
"a man",
|
81 |
-
"Snow",
|
82 |
-
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
83 |
-
],
|
84 |
-
[
|
85 |
-
['./examples/musk_resize.jpeg'],
|
86 |
-
"a man",
|
87 |
-
"Mars",
|
88 |
-
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
89 |
-
],
|
90 |
-
[
|
91 |
-
['./examples/sam_resize.png'],
|
92 |
-
"a man",
|
93 |
-
"Jungle",
|
94 |
-
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree",
|
95 |
-
],
|
96 |
-
[
|
97 |
-
['./examples/schmidhuber_resize.png'],
|
98 |
-
"a man",
|
99 |
-
"Neon",
|
100 |
-
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
101 |
-
],
|
102 |
-
[
|
103 |
-
['./examples/kaifu_resize.png'],
|
104 |
-
"a man",
|
105 |
-
"Vibrant Color",
|
106 |
-
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
107 |
-
],
|
108 |
-
]
|
109 |
-
return case
|
110 |
-
|
111 |
-
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
|
112 |
-
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
113 |
-
|
114 |
-
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
|
115 |
-
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
116 |
-
|
117 |
-
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
|
118 |
-
stickwidth = 4
|
119 |
-
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
120 |
-
kps = np.array(kps)
|
121 |
-
|
122 |
-
w, h = image_pil.size
|
123 |
-
out_img = np.zeros([h, w, 3])
|
124 |
-
|
125 |
-
for i in range(len(limbSeq)):
|
126 |
-
index = limbSeq[i]
|
127 |
-
color = color_list[index[0]]
|
128 |
-
|
129 |
-
x = kps[index][:, 0]
|
130 |
-
y = kps[index][:, 1]
|
131 |
-
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
|
132 |
-
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
|
133 |
-
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
|
134 |
-
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
|
135 |
-
out_img = (out_img * 0.6).astype(np.uint8)
|
136 |
-
|
137 |
-
for idx_kp, kp in enumerate(kps):
|
138 |
-
color = color_list[idx_kp]
|
139 |
-
x, y = kp
|
140 |
-
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
|
141 |
-
|
142 |
-
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
|
143 |
-
return out_img_pil
|
144 |
-
|
145 |
-
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
|
146 |
-
pad_to_max_side=False, mode=PIL.Image.BILINEAR, base_pixel_number=64):
|
147 |
-
|
148 |
-
w, h = input_image.size
|
149 |
-
if size is not None:
|
150 |
-
w_resize_new, h_resize_new = size
|
151 |
-
else:
|
152 |
-
ratio = min_side / min(h, w)
|
153 |
-
w, h = round(ratio*w), round(ratio*h)
|
154 |
-
ratio = max_side / max(h, w)
|
155 |
-
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
|
156 |
-
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
|
157 |
-
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
|
158 |
-
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
|
159 |
-
|
160 |
-
if pad_to_max_side:
|
161 |
-
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
|
162 |
-
offset_x = (max_side - w_resize_new) // 2
|
163 |
-
offset_y = (max_side - h_resize_new) // 2
|
164 |
-
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
|
165 |
-
input_image = Image.fromarray(res)
|
166 |
-
return input_image
|
167 |
-
|
168 |
-
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
|
169 |
-
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
170 |
-
return p.replace("{prompt}", positive), n + ' ' + negative
|
171 |
-
|
172 |
-
@spaces.GPU
|
173 |
-
def generate_image(face_image, pose_image, prompt, negative_prompt, style_name, enhance_face_region, num_steps, identitynet_strength_ratio, adapter_strength_ratio, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
|
174 |
-
|
175 |
-
if face_image is None:
|
176 |
-
raise gr.Error(f"Cannot find any input face image! Please upload the face image")
|
177 |
-
|
178 |
-
if prompt is None:
|
179 |
-
prompt = "a person"
|
180 |
-
|
181 |
-
# apply the style template
|
182 |
-
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
height, width, _ = face_image_cv2.shape
|
188 |
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
-
|
193 |
-
raise gr.Error(f"Cannot find any face in the image! Please upload another person image")
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
|
203 |
|
204 |
-
|
205 |
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
-
|
210 |
-
|
|
|
|
|
|
|
211 |
|
212 |
-
|
213 |
-
|
214 |
-
if enhance_face_region:
|
215 |
-
control_mask = np.zeros([height, width, 3])
|
216 |
-
x1, y1, x2, y2 = face_info['bbox']
|
217 |
-
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
218 |
-
control_mask[y1:y2, x1:x2] = 255
|
219 |
-
control_mask = Image.fromarray(control_mask.astype(np.uint8))
|
220 |
-
else:
|
221 |
-
control_mask = None
|
222 |
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
image=face_kps,
|
234 |
-
control_mask=control_mask,
|
235 |
-
controlnet_conditioning_scale=float(identitynet_strength_ratio),
|
236 |
-
num_inference_steps=num_steps,
|
237 |
-
guidance_scale=guidance_scale,
|
238 |
-
height=height,
|
239 |
-
width=width,
|
240 |
-
generator=generator
|
241 |
-
).images
|
242 |
-
|
243 |
-
return images, gr.update(visible=True)
|
244 |
-
|
245 |
-
### Description
|
246 |
-
title = r"""
|
247 |
-
<h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds</h1>
|
248 |
-
"""
|
249 |
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
-
|
280 |
-
### Usage tips of InstantID
|
281 |
-
1. If you're unsatisfied with the similarity, increase the weight of controlnet_conditioning_scale (IdentityNet) and ip_adapter_scale (Adapter).
|
282 |
-
2. If the generated image is over-saturated, decrease the ip_adapter_scale. If not work, decrease controlnet_conditioning_scale.
|
283 |
-
3. If text control is not as expected, decrease ip_adapter_scale.
|
284 |
-
4. Find a good base model always makes a difference.
|
285 |
-
"""
|
286 |
|
287 |
-
|
288 |
-
.
|
289 |
-
|
290 |
-
|
|
|
|
|
291 |
|
292 |
-
|
293 |
-
|
294 |
-
gr.Markdown(description)
|
295 |
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
label="Upload a photo of your face",
|
302 |
-
file_types=["image"]
|
303 |
-
)
|
304 |
-
uploaded_faces = gr.Gallery(label="Your images", visible=False, columns=1, rows=1, height=512)
|
305 |
-
with gr.Column(visible=False) as clear_button_face:
|
306 |
-
remove_and_reupload_faces = gr.ClearButton(value="Remove and upload new ones", components=face_files, size="sm")
|
307 |
-
|
308 |
-
# optional: upload a reference pose image
|
309 |
-
pose_files = gr.Files(
|
310 |
-
label="Upload a reference pose image (optional)",
|
311 |
-
file_types=["image"]
|
312 |
-
)
|
313 |
-
uploaded_poses = gr.Gallery(label="Your images", visible=False, columns=1, rows=1, height=512)
|
314 |
-
with gr.Column(visible=False) as clear_button_pose:
|
315 |
-
remove_and_reupload_poses = gr.ClearButton(value="Remove and upload new ones", components=pose_files, size="sm")
|
316 |
-
|
317 |
-
# prompt
|
318 |
-
prompt = gr.Textbox(label="Prompt",
|
319 |
-
info="Give simple prompt is enough to achieve good face fedility",
|
320 |
-
placeholder="A photo of a person",
|
321 |
-
value="")
|
322 |
-
|
323 |
-
submit = gr.Button("Submit", variant="primary")
|
324 |
-
|
325 |
-
style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
326 |
-
|
327 |
-
# strength
|
328 |
-
identitynet_strength_ratio = gr.Slider(
|
329 |
-
label="IdentityNet strength (for fedility)",
|
330 |
-
minimum=0,
|
331 |
-
maximum=1.5,
|
332 |
-
step=0.05,
|
333 |
-
value=0.80,
|
334 |
)
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
value=0.80,
|
341 |
)
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
)
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
)
|
397 |
-
|
398 |
-
gr.Examples(
|
399 |
-
examples=get_example(),
|
400 |
-
inputs=[face_files, prompt, style, negative_prompt],
|
401 |
-
run_on_click=True,
|
402 |
-
fn=upload_example_to_gallery,
|
403 |
-
outputs=[uploaded_faces, clear_button_face, face_files],
|
404 |
-
)
|
405 |
-
|
406 |
-
gr.Markdown(article)
|
407 |
|
408 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The InstantX Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
import cv2
|
19 |
import math
|
20 |
+
|
|
|
21 |
import numpy as np
|
22 |
+
import PIL.Image
|
23 |
+
import torch
|
24 |
+
import torch.nn.functional as F
|
25 |
+
from transformers import CLIPTokenizer
|
26 |
|
27 |
+
from diffusers.image_processor import PipelineImageInput
|
|
|
28 |
|
|
|
|
|
29 |
from diffusers.models import ControlNetModel
|
30 |
|
31 |
+
from diffusers.utils import (
|
32 |
+
deprecate,
|
33 |
+
logging,
|
34 |
+
replace_example_docstring,
|
35 |
+
)
|
36 |
+
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
|
37 |
+
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
38 |
|
39 |
+
from diffusers import StableDiffusionXLControlNetPipeline
|
40 |
+
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
41 |
+
from diffusers.utils.import_utils import is_xformers_available
|
42 |
|
43 |
+
from ip_adapter.resampler import Resampler
|
|
|
44 |
|
45 |
+
from ip_adapter.attention_processor import AttnProcessor, IPAttnProcessor
|
46 |
+
from ip_adapter.attention_processor import region_control
|
|
|
|
|
|
|
47 |
|
48 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
|
|
|
49 |
|
|
|
|
|
|
|
50 |
|
51 |
+
EXAMPLE_DOC_STRING = """
|
52 |
+
Examples:
|
53 |
+
```py
|
54 |
+
>>> # !pip install opencv-python transformers accelerate insightface
|
55 |
+
>>> import diffusers
|
56 |
+
>>> from diffusers.utils import load_image
|
57 |
+
>>> from diffusers.models import ControlNetModel
|
58 |
|
59 |
+
>>> import cv2
|
60 |
+
>>> import torch
|
61 |
+
>>> import numpy as np
|
62 |
+
>>> from PIL import Image
|
63 |
+
|
64 |
+
>>> from insightface.app import FaceAnalysis
|
65 |
+
>>> from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps
|
66 |
|
67 |
+
>>> # download 'antelopev2' under ./models
|
68 |
+
>>> app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
69 |
+
>>> app.prepare(ctx_id=0, det_size=(640, 640))
|
70 |
+
|
71 |
+
>>> # download models under ./checkpoints
|
72 |
+
>>> face_adapter = f'./checkpoints/ip-adapter.bin'
|
73 |
+
>>> controlnet_path = f'./checkpoints/ControlNetModel'
|
74 |
+
|
75 |
+
>>> # load IdentityNet
|
76 |
+
>>> controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
77 |
+
|
78 |
+
>>> pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
79 |
+
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
|
80 |
+
... )
|
81 |
+
>>> pipe.cuda()
|
82 |
+
|
83 |
+
>>> # load adapter
|
84 |
+
>>> pipe.load_ip_adapter_instantid(face_adapter)
|
85 |
|
86 |
+
>>> prompt = "analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality"
|
87 |
+
>>> negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured (lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch,deformed, mutated, cross-eyed, ugly, disfigured"
|
88 |
+
|
89 |
+
>>> # load an image
|
90 |
+
>>> image = load_image("your-example.jpg")
|
91 |
+
|
92 |
+
>>> face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))[-1]
|
93 |
+
>>> face_emb = face_info['embedding']
|
94 |
+
>>> face_kps = draw_kps(face_image, face_info['kps'])
|
95 |
+
|
96 |
+
>>> pipe.set_ip_adapter_scale(0.8)
|
97 |
+
|
98 |
+
>>> # generate image
|
99 |
+
>>> image = pipe(
|
100 |
+
... prompt, image_embeds=face_emb, image=face_kps, controlnet_conditioning_scale=0.8
|
101 |
+
... ).images[0]
|
102 |
+
```
|
103 |
+
"""
|
104 |
+
|
105 |
+
|
106 |
+
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipeline
|
107 |
+
class LongPromptWeight(object):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
"""
|
110 |
+
Copied from https://github.com/huggingface/diffusers/blob/main/examples/community/lpw_stable_diffusion_xl.py
|
111 |
+
"""
|
|
|
112 |
|
113 |
+
def __init__(self) -> None:
|
114 |
+
pass
|
115 |
+
|
116 |
+
def parse_prompt_attention(self, text):
|
117 |
+
"""
|
118 |
+
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
|
119 |
+
Accepted tokens are:
|
120 |
+
(abc) - increases attention to abc by a multiplier of 1.1
|
121 |
+
(abc:3.12) - increases attention to abc by a multiplier of 3.12
|
122 |
+
[abc] - decreases attention to abc by a multiplier of 1.1
|
123 |
+
\( - literal character '('
|
124 |
+
\[ - literal character '['
|
125 |
+
\) - literal character ')'
|
126 |
+
\] - literal character ']'
|
127 |
+
\\ - literal character '\'
|
128 |
+
anything else - just text
|
129 |
+
|
130 |
+
>>> parse_prompt_attention('normal text')
|
131 |
+
[['normal text', 1.0]]
|
132 |
+
>>> parse_prompt_attention('an (important) word')
|
133 |
+
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
|
134 |
+
>>> parse_prompt_attention('(unbalanced')
|
135 |
+
[['unbalanced', 1.1]]
|
136 |
+
>>> parse_prompt_attention('\(literal\]')
|
137 |
+
[['(literal]', 1.0]]
|
138 |
+
>>> parse_prompt_attention('(unnecessary)(parens)')
|
139 |
+
[['unnecessaryparens', 1.1]]
|
140 |
+
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
|
141 |
+
[['a ', 1.0],
|
142 |
+
['house', 1.5730000000000004],
|
143 |
+
[' ', 1.1],
|
144 |
+
['on', 1.0],
|
145 |
+
[' a ', 1.1],
|
146 |
+
['hill', 0.55],
|
147 |
+
[', sun, ', 1.1],
|
148 |
+
['sky', 1.4641000000000006],
|
149 |
+
['.', 1.1]]
|
150 |
+
"""
|
151 |
+
import re
|
152 |
+
|
153 |
+
re_attention = re.compile(
|
154 |
+
r"""
|
155 |
+
\\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)|
|
156 |
+
\)|]|[^\\()\[\]:]+|:
|
157 |
+
""",
|
158 |
+
re.X,
|
159 |
+
)
|
160 |
+
|
161 |
+
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)
|
162 |
+
|
163 |
+
res = []
|
164 |
+
round_brackets = []
|
165 |
+
square_brackets = []
|
166 |
+
|
167 |
+
round_bracket_multiplier = 1.1
|
168 |
+
square_bracket_multiplier = 1 / 1.1
|
169 |
+
|
170 |
+
def multiply_range(start_position, multiplier):
|
171 |
+
for p in range(start_position, len(res)):
|
172 |
+
res[p][1] *= multiplier
|
173 |
+
|
174 |
+
for m in re_attention.finditer(text):
|
175 |
+
text = m.group(0)
|
176 |
+
weight = m.group(1)
|
177 |
+
|
178 |
+
if text.startswith("\\"):
|
179 |
+
res.append([text[1:], 1.0])
|
180 |
+
elif text == "(":
|
181 |
+
round_brackets.append(len(res))
|
182 |
+
elif text == "[":
|
183 |
+
square_brackets.append(len(res))
|
184 |
+
elif weight is not None and len(round_brackets) > 0:
|
185 |
+
multiply_range(round_brackets.pop(), float(weight))
|
186 |
+
elif text == ")" and len(round_brackets) > 0:
|
187 |
+
multiply_range(round_brackets.pop(), round_bracket_multiplier)
|
188 |
+
elif text == "]" and len(square_brackets) > 0:
|
189 |
+
multiply_range(square_brackets.pop(), square_bracket_multiplier)
|
190 |
+
else:
|
191 |
+
parts = re.split(re_break, text)
|
192 |
+
for i, part in enumerate(parts):
|
193 |
+
if i > 0:
|
194 |
+
res.append(["BREAK", -1])
|
195 |
+
res.append([part, 1.0])
|
196 |
+
|
197 |
+
for pos in round_brackets:
|
198 |
+
multiply_range(pos, round_bracket_multiplier)
|
199 |
+
|
200 |
+
for pos in square_brackets:
|
201 |
+
multiply_range(pos, square_bracket_multiplier)
|
202 |
+
|
203 |
+
if len(res) == 0:
|
204 |
+
res = [["", 1.0]]
|
205 |
+
|
206 |
+
# merge runs of identical weights
|
207 |
+
i = 0
|
208 |
+
while i + 1 < len(res):
|
209 |
+
if res[i][1] == res[i + 1][1]:
|
210 |
+
res[i][0] += res[i + 1][0]
|
211 |
+
res.pop(i + 1)
|
212 |
+
else:
|
213 |
+
i += 1
|
214 |
+
|
215 |
+
return res
|
216 |
+
|
217 |
+
def get_prompts_tokens_with_weights(self, clip_tokenizer: CLIPTokenizer, prompt: str):
|
218 |
+
"""
|
219 |
+
Get prompt token ids and weights, this function works for both prompt and negative prompt
|
220 |
+
|
221 |
+
Args:
|
222 |
+
pipe (CLIPTokenizer)
|
223 |
+
A CLIPTokenizer
|
224 |
+
prompt (str)
|
225 |
+
A prompt string with weights
|
226 |
+
|
227 |
+
Returns:
|
228 |
+
text_tokens (list)
|
229 |
+
A list contains token ids
|
230 |
+
text_weight (list)
|
231 |
+
A list contains the correspodent weight of token ids
|
232 |
+
|
233 |
+
Example:
|
234 |
+
import torch
|
235 |
+
from transformers import CLIPTokenizer
|
236 |
+
|
237 |
+
clip_tokenizer = CLIPTokenizer.from_pretrained(
|
238 |
+
"stablediffusionapi/deliberate-v2"
|
239 |
+
, subfolder = "tokenizer"
|
240 |
+
, dtype = torch.float16
|
241 |
+
)
|
242 |
+
|
243 |
+
token_id_list, token_weight_list = get_prompts_tokens_with_weights(
|
244 |
+
clip_tokenizer = clip_tokenizer
|
245 |
+
,prompt = "a (red:1.5) cat"*70
|
246 |
+
)
|
247 |
+
"""
|
248 |
+
texts_and_weights = self.parse_prompt_attention(prompt)
|
249 |
+
text_tokens, text_weights = [], []
|
250 |
+
for word, weight in texts_and_weights:
|
251 |
+
# tokenize and discard the starting and the ending token
|
252 |
+
token = clip_tokenizer(word, truncation=False).input_ids[1:-1] # so that tokenize whatever length prompt
|
253 |
+
# the returned token is a 1d list: [320, 1125, 539, 320]
|
254 |
+
|
255 |
+
# merge the new tokens to the all tokens holder: text_tokens
|
256 |
+
text_tokens = [*text_tokens, *token]
|
257 |
+
|
258 |
+
# each token chunk will come with one weight, like ['red cat', 2.0]
|
259 |
+
# need to expand weight for each token.
|
260 |
+
chunk_weights = [weight] * len(token)
|
261 |
+
|
262 |
+
# append the weight back to the weight holder: text_weights
|
263 |
+
text_weights = [*text_weights, *chunk_weights]
|
264 |
+
return text_tokens, text_weights
|
265 |
+
|
266 |
+
def group_tokens_and_weights(self, token_ids: list, weights: list, pad_last_block=False):
|
267 |
+
"""
|
268 |
+
Produce tokens and weights in groups and pad the missing tokens
|
269 |
+
|
270 |
+
Args:
|
271 |
+
token_ids (list)
|
272 |
+
The token ids from tokenizer
|
273 |
+
weights (list)
|
274 |
+
The weights list from function get_prompts_tokens_with_weights
|
275 |
+
pad_last_block (bool)
|
276 |
+
Control if fill the last token list to 75 tokens with eos
|
277 |
+
Returns:
|
278 |
+
new_token_ids (2d list)
|
279 |
+
new_weights (2d list)
|
280 |
+
|
281 |
+
Example:
|
282 |
+
token_groups,weight_groups = group_tokens_and_weights(
|
283 |
+
token_ids = token_id_list
|
284 |
+
, weights = token_weight_list
|
285 |
+
)
|
286 |
+
"""
|
287 |
+
bos, eos = 49406, 49407
|
288 |
+
|
289 |
+
# this will be a 2d list
|
290 |
+
new_token_ids = []
|
291 |
+
new_weights = []
|
292 |
+
while len(token_ids) >= 75:
|
293 |
+
# get the first 75 tokens
|
294 |
+
head_75_tokens = [token_ids.pop(0) for _ in range(75)]
|
295 |
+
head_75_weights = [weights.pop(0) for _ in range(75)]
|
296 |
+
|
297 |
+
# extract token ids and weights
|
298 |
+
temp_77_token_ids = [bos] + head_75_tokens + [eos]
|
299 |
+
temp_77_weights = [1.0] + head_75_weights + [1.0]
|
300 |
+
|
301 |
+
# add 77 token and weights chunk to the holder list
|
302 |
+
new_token_ids.append(temp_77_token_ids)
|
303 |
+
new_weights.append(temp_77_weights)
|
304 |
+
|
305 |
+
# padding the left
|
306 |
+
if len(token_ids) >= 0:
|
307 |
+
padding_len = 75 - len(token_ids) if pad_last_block else 0
|
308 |
+
|
309 |
+
temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos]
|
310 |
+
new_token_ids.append(temp_77_token_ids)
|
311 |
+
|
312 |
+
temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0]
|
313 |
+
new_weights.append(temp_77_weights)
|
314 |
+
|
315 |
+
return new_token_ids, new_weights
|
316 |
+
|
317 |
+
def get_weighted_text_embeddings_sdxl(
|
318 |
+
self,
|
319 |
+
pipe: StableDiffusionXLPipeline,
|
320 |
+
prompt: str = "",
|
321 |
+
prompt_2: str = None,
|
322 |
+
neg_prompt: str = "",
|
323 |
+
neg_prompt_2: str = None,
|
324 |
+
prompt_embeds=None,
|
325 |
+
negative_prompt_embeds=None,
|
326 |
+
pooled_prompt_embeds=None,
|
327 |
+
negative_pooled_prompt_embeds=None,
|
328 |
+
extra_emb=None,
|
329 |
+
extra_emb_alpha=0.6,
|
330 |
+
):
|
331 |
+
"""
|
332 |
+
This function can process long prompt with weights, no length limitation
|
333 |
+
for Stable Diffusion XL
|
334 |
+
|
335 |
+
Args:
|
336 |
+
pipe (StableDiffusionPipeline)
|
337 |
+
prompt (str)
|
338 |
+
prompt_2 (str)
|
339 |
+
neg_prompt (str)
|
340 |
+
neg_prompt_2 (str)
|
341 |
+
Returns:
|
342 |
+
prompt_embeds (torch.Tensor)
|
343 |
+
neg_prompt_embeds (torch.Tensor)
|
344 |
+
"""
|
345 |
+
#
|
346 |
+
if prompt_embeds is not None and \
|
347 |
+
negative_prompt_embeds is not None and \
|
348 |
+
pooled_prompt_embeds is not None and \
|
349 |
+
negative_pooled_prompt_embeds is not None:
|
350 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
351 |
+
|
352 |
+
if prompt_2:
|
353 |
+
prompt = f"{prompt} {prompt_2}"
|
354 |
+
|
355 |
+
if neg_prompt_2:
|
356 |
+
neg_prompt = f"{neg_prompt} {neg_prompt_2}"
|
357 |
+
|
358 |
+
eos = pipe.tokenizer.eos_token_id
|
359 |
+
|
360 |
+
# tokenizer 1
|
361 |
+
prompt_tokens, prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
|
362 |
+
neg_prompt_tokens, neg_prompt_weights = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)
|
363 |
+
|
364 |
+
# tokenizer 2
|
365 |
+
# prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt)
|
366 |
+
# neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt)
|
367 |
+
# tokenizer 2 遇到 !! !!!! 等多感叹号和tokenizer 1的效果不一致
|
368 |
+
prompt_tokens_2, prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, prompt)
|
369 |
+
neg_prompt_tokens_2, neg_prompt_weights_2 = self.get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt)
|
370 |
+
|
371 |
+
# padding the shorter one for prompt set 1
|
372 |
+
prompt_token_len = len(prompt_tokens)
|
373 |
+
neg_prompt_token_len = len(neg_prompt_tokens)
|
374 |
+
|
375 |
+
if prompt_token_len > neg_prompt_token_len:
|
376 |
+
# padding the neg_prompt with eos token
|
377 |
+
neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
|
378 |
+
neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
|
379 |
+
else:
|
380 |
+
# padding the prompt
|
381 |
+
prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len)
|
382 |
+
prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len)
|
383 |
+
|
384 |
+
# padding the shorter one for token set 2
|
385 |
+
prompt_token_len_2 = len(prompt_tokens_2)
|
386 |
+
neg_prompt_token_len_2 = len(neg_prompt_tokens_2)
|
387 |
+
|
388 |
+
if prompt_token_len_2 > neg_prompt_token_len_2:
|
389 |
+
# padding the neg_prompt with eos token
|
390 |
+
neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
|
391 |
+
neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
|
392 |
+
else:
|
393 |
+
# padding the prompt
|
394 |
+
prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
|
395 |
+
prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2)
|
396 |
+
|
397 |
+
embeds = []
|
398 |
+
neg_embeds = []
|
399 |
+
|
400 |
+
prompt_token_groups, prompt_weight_groups = self.group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy())
|
401 |
+
|
402 |
+
neg_prompt_token_groups, neg_prompt_weight_groups = self.group_tokens_and_weights(
|
403 |
+
neg_prompt_tokens.copy(), neg_prompt_weights.copy()
|
404 |
+
)
|
405 |
+
|
406 |
+
prompt_token_groups_2, prompt_weight_groups_2 = self.group_tokens_and_weights(
|
407 |
+
prompt_tokens_2.copy(), prompt_weights_2.copy()
|
408 |
+
)
|
409 |
+
|
410 |
+
neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = self.group_tokens_and_weights(
|
411 |
+
neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy()
|
412 |
+
)
|
413 |
+
|
414 |
+
# get prompt embeddings one by one is not working.
|
415 |
+
for i in range(len(prompt_token_groups)):
|
416 |
+
# get positive prompt embeddings with weights
|
417 |
+
token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
|
418 |
+
weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)
|
419 |
+
|
420 |
+
token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
|
421 |
+
|
422 |
+
# use first text encoder
|
423 |
+
prompt_embeds_1 = pipe.text_encoder(token_tensor.to(pipe.device), output_hidden_states=True)
|
424 |
+
prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2]
|
425 |
+
|
426 |
+
# use second text encoder
|
427 |
+
prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(pipe.device), output_hidden_states=True)
|
428 |
+
prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2]
|
429 |
+
pooled_prompt_embeds = prompt_embeds_2[0]
|
430 |
+
|
431 |
+
prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states]
|
432 |
+
token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0)
|
433 |
+
|
434 |
+
for j in range(len(weight_tensor)):
|
435 |
+
if weight_tensor[j] != 1.0:
|
436 |
+
token_embedding[j] = (
|
437 |
+
token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j]
|
438 |
+
)
|
439 |
+
|
440 |
+
token_embedding = token_embedding.unsqueeze(0)
|
441 |
+
embeds.append(token_embedding)
|
442 |
+
|
443 |
+
# get negative prompt embeddings with weights
|
444 |
+
neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=pipe.device)
|
445 |
+
neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=pipe.device)
|
446 |
+
neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=pipe.device)
|
447 |
+
|
448 |
+
# use first text encoder
|
449 |
+
neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(pipe.device), output_hidden_states=True)
|
450 |
+
neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2]
|
451 |
+
|
452 |
+
# use second text encoder
|
453 |
+
neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(pipe.device), output_hidden_states=True)
|
454 |
+
neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2]
|
455 |
+
negative_pooled_prompt_embeds = neg_prompt_embeds_2[0]
|
456 |
+
|
457 |
+
neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states]
|
458 |
+
neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0)
|
459 |
+
|
460 |
+
for z in range(len(neg_weight_tensor)):
|
461 |
+
if neg_weight_tensor[z] != 1.0:
|
462 |
+
neg_token_embedding[z] = (
|
463 |
+
neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z]
|
464 |
+
)
|
465 |
+
|
466 |
+
neg_token_embedding = neg_token_embedding.unsqueeze(0)
|
467 |
+
neg_embeds.append(neg_token_embedding)
|
468 |
+
|
469 |
+
prompt_embeds = torch.cat(embeds, dim=1)
|
470 |
+
negative_prompt_embeds = torch.cat(neg_embeds, dim=1)
|
471 |
+
|
472 |
+
if extra_emb is not None:
|
473 |
+
extra_emb = extra_emb.to(prompt_embeds.device, dtype=prompt_embeds.dtype) * extra_emb_alpha
|
474 |
+
prompt_embeds = torch.cat([prompt_embeds, extra_emb], 1)
|
475 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds, torch.zeros_like(extra_emb)], 1)
|
476 |
+
print(f'fix prompt_embeds, extra_emb_alpha={extra_emb_alpha}')
|
477 |
+
|
478 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
479 |
+
|
480 |
+
def get_prompt_embeds(self, *args, **kwargs):
|
481 |
+
prompt_embeds, negative_prompt_embeds, _, _ = self.get_weighted_text_embeddings_sdxl(*args, **kwargs)
|
482 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
483 |
+
return prompt_embeds
|
484 |
+
|
485 |
|
486 |
+
class StableDiffusionXLInstantIDPipeline(StableDiffusionXLControlNetPipeline):
|
|
|
487 |
|
488 |
+
def cuda(self, dtype=torch.float16, use_xformers=False):
|
489 |
+
self.to('cuda', dtype)
|
490 |
+
|
491 |
+
if hasattr(self, 'image_proj_model'):
|
492 |
+
self.image_proj_model.to(self.unet.device).to(self.unet.dtype)
|
493 |
+
|
494 |
+
if use_xformers:
|
495 |
+
if is_xformers_available():
|
496 |
+
import xformers
|
497 |
+
from packaging import version
|
498 |
+
|
499 |
+
xformers_version = version.parse(xformers.__version__)
|
500 |
+
if xformers_version == version.parse("0.0.16"):
|
501 |
+
logger.warn(
|
502 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
503 |
+
)
|
504 |
+
self.enable_xformers_memory_efficient_attention()
|
505 |
+
else:
|
506 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
507 |
|
508 |
+
def load_ip_adapter_instantid(self, model_ckpt, image_emb_dim=512, num_tokens=16, scale=0.5):
|
509 |
+
self.set_image_proj_model(model_ckpt, image_emb_dim, num_tokens)
|
510 |
+
self.set_ip_adapter(model_ckpt, num_tokens, scale)
|
|
|
511 |
|
512 |
+
def set_image_proj_model(self, model_ckpt, image_emb_dim=512, num_tokens=16):
|
513 |
|
514 |
+
image_proj_model = Resampler(
|
515 |
+
dim=1280,
|
516 |
+
depth=4,
|
517 |
+
dim_head=64,
|
518 |
+
heads=20,
|
519 |
+
num_queries=num_tokens,
|
520 |
+
embedding_dim=image_emb_dim,
|
521 |
+
output_dim=self.unet.config.cross_attention_dim,
|
522 |
+
ff_mult=4,
|
523 |
+
)
|
524 |
+
|
525 |
+
image_proj_model.eval()
|
526 |
|
527 |
+
self.image_proj_model = image_proj_model.to(self.device, dtype=self.dtype)
|
528 |
+
state_dict = torch.load(model_ckpt, map_location="cpu")
|
529 |
+
if 'image_proj' in state_dict:
|
530 |
+
state_dict = state_dict["image_proj"]
|
531 |
+
self.image_proj_model.load_state_dict(state_dict)
|
532 |
|
533 |
+
self.image_proj_model_in_features = image_emb_dim
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
534 |
|
535 |
+
def set_ip_adapter(self, model_ckpt, num_tokens, scale):
|
536 |
+
|
537 |
+
unet = self.unet
|
538 |
+
attn_procs = {}
|
539 |
+
for name in unet.attn_processors.keys():
|
540 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
541 |
+
if name.startswith("mid_block"):
|
542 |
+
hidden_size = unet.config.block_out_channels[-1]
|
543 |
+
elif name.startswith("up_blocks"):
|
544 |
+
block_id = int(name[len("up_blocks.")])
|
545 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
546 |
+
elif name.startswith("down_blocks"):
|
547 |
+
block_id = int(name[len("down_blocks.")])
|
548 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
549 |
+
if cross_attention_dim is None:
|
550 |
+
attn_procs[name] = AttnProcessor().to(unet.device, dtype=unet.dtype)
|
551 |
+
else:
|
552 |
+
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size,
|
553 |
+
cross_attention_dim=cross_attention_dim,
|
554 |
+
scale=scale,
|
555 |
+
num_tokens=num_tokens).to(unet.device, dtype=unet.dtype)
|
556 |
+
unet.set_attn_processor(attn_procs)
|
557 |
+
|
558 |
+
state_dict = torch.load(model_ckpt, map_location="cpu")
|
559 |
+
ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values())
|
560 |
+
if 'ip_adapter' in state_dict:
|
561 |
+
state_dict = state_dict['ip_adapter']
|
562 |
+
ip_layers.load_state_dict(state_dict)
|
563 |
|
564 |
+
def set_ip_adapter_scale(self, scale):
|
565 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
566 |
+
for attn_processor in unet.attn_processors.values():
|
567 |
+
if isinstance(attn_processor, IPAttnProcessor):
|
568 |
+
attn_processor.scale = scale
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
569 |
|
570 |
+
def _encode_prompt_image_emb(self, prompt_image_emb, device, dtype, do_classifier_free_guidance):
|
571 |
+
|
572 |
+
if isinstance(prompt_image_emb, torch.Tensor):
|
573 |
+
prompt_image_emb = prompt_image_emb.clone().detach()
|
574 |
+
else:
|
575 |
+
prompt_image_emb = torch.tensor(prompt_image_emb)
|
576 |
+
|
577 |
+
prompt_image_emb = prompt_image_emb.to(device=device, dtype=dtype)
|
578 |
+
prompt_image_emb = prompt_image_emb.reshape([1, -1, self.image_proj_model_in_features])
|
579 |
+
|
580 |
+
if do_classifier_free_guidance:
|
581 |
+
prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0)
|
582 |
+
else:
|
583 |
+
prompt_image_emb = torch.cat([prompt_image_emb], dim=0)
|
584 |
+
|
585 |
+
prompt_image_emb = self.image_proj_model(prompt_image_emb)
|
586 |
+
return prompt_image_emb
|
587 |
|
588 |
+
@torch.no_grad()
|
589 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
590 |
+
def __call__(
|
591 |
+
self,
|
592 |
+
prompt: Union[str, List[str]] = None,
|
593 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
594 |
+
image: PipelineImageInput = None,
|
595 |
+
height: Optional[int] = None,
|
596 |
+
width: Optional[int] = None,
|
597 |
+
num_inference_steps: int = 50,
|
598 |
+
guidance_scale: float = 5.0,
|
599 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
600 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
601 |
+
num_images_per_prompt: Optional[int] = 1,
|
602 |
+
eta: float = 0.0,
|
603 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
604 |
+
latents: Optional[torch.FloatTensor] = None,
|
605 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
606 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
607 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
608 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
609 |
+
image_embeds: Optional[torch.FloatTensor] = None,
|
610 |
+
output_type: Optional[str] = "pil",
|
611 |
+
return_dict: bool = True,
|
612 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
613 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
614 |
+
guess_mode: bool = False,
|
615 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
616 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
617 |
+
original_size: Tuple[int, int] = None,
|
618 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
619 |
+
target_size: Tuple[int, int] = None,
|
620 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
621 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
622 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
623 |
+
clip_skip: Optional[int] = None,
|
624 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
625 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
626 |
+
control_mask = None,
|
627 |
+
**kwargs,
|
628 |
+
):
|
629 |
+
r"""
|
630 |
+
The call function to the pipeline for generation.
|
631 |
|
632 |
+
Args:
|
633 |
+
prompt (`str` or `List[str]`, *optional*):
|
634 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
635 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
636 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
637 |
+
used in both text-encoders.
|
638 |
+
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
639 |
+
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
640 |
+
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
641 |
+
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
|
642 |
+
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
|
643 |
+
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
|
644 |
+
`init`, images must be passed as a list such that each element of the list can be correctly batched for
|
645 |
+
input to a single ControlNet.
|
646 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
647 |
+
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
648 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
649 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
650 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
651 |
+
The width in pixels of the generated image. Anything below 512 pixels won't work well for
|
652 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
653 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
654 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
655 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
656 |
+
expense of slower inference.
|
657 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
658 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
659 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
660 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
661 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
662 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
663 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
664 |
+
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
|
665 |
+
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
|
666 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
667 |
+
The number of images to generate per prompt.
|
668 |
+
eta (`float`, *optional*, defaults to 0.0):
|
669 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
670 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
671 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
672 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
673 |
+
generation deterministic.
|
674 |
+
latents (`torch.FloatTensor`, *optional*):
|
675 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
676 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
677 |
+
tensor is generated by sampling using the supplied random `generator`.
|
678 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
679 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
680 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
681 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
682 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
683 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
684 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
685 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
686 |
+
not provided, pooled text embeddings are generated from `prompt` input argument.
|
687 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
688 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
|
689 |
+
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
|
690 |
+
argument.
|
691 |
+
image_embeds (`torch.FloatTensor`, *optional*):
|
692 |
+
Pre-generated image embeddings.
|
693 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
694 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
695 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
696 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
697 |
+
plain tuple.
|
698 |
+
cross_attention_kwargs (`dict`, *optional*):
|
699 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
700 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
701 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
702 |
+
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
703 |
+
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
704 |
+
the corresponding scale as a list.
|
705 |
+
guess_mode (`bool`, *optional*, defaults to `False`):
|
706 |
+
The ControlNet encoder tries to recognize the content of the input image even if you remove all
|
707 |
+
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
|
708 |
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
709 |
+
The percentage of total steps at which the ControlNet starts applying.
|
710 |
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
711 |
+
The percentage of total steps at which the ControlNet stops applying.
|
712 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
713 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
714 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
715 |
+
explained in section 2.2 of
|
716 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
717 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
718 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
719 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
720 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
721 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
722 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
723 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
724 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
725 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
726 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
727 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
728 |
+
micro-conditioning as explained in section 2.2 of
|
729 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
730 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
731 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
732 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
733 |
+
micro-conditioning as explained in section 2.2 of
|
734 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
735 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
736 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
737 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
738 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
739 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
740 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
741 |
+
clip_skip (`int`, *optional*):
|
742 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
743 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
744 |
+
callback_on_step_end (`Callable`, *optional*):
|
745 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
746 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
747 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
748 |
+
`callback_on_step_end_tensor_inputs`.
|
749 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
750 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
751 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
752 |
+
`._callback_tensor_inputs` attribute of your pipeine class.
|
753 |
|
754 |
+
Examples:
|
|
|
|
|
|
|
|
|
|
|
|
|
755 |
|
756 |
+
Returns:
|
757 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
758 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
759 |
+
otherwise a `tuple` is returned containing the output images.
|
760 |
+
"""
|
761 |
+
lpw = LongPromptWeight()
|
762 |
|
763 |
+
callback = kwargs.pop("callback", None)
|
764 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
|
|
765 |
|
766 |
+
if callback is not None:
|
767 |
+
deprecate(
|
768 |
+
"callback",
|
769 |
+
"1.0.0",
|
770 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
771 |
)
|
772 |
+
if callback_steps is not None:
|
773 |
+
deprecate(
|
774 |
+
"callback_steps",
|
775 |
+
"1.0.0",
|
776 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
|
|
777 |
)
|
778 |
+
|
779 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
780 |
+
|
781 |
+
# align format for control guidance
|
782 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
783 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
784 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
785 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
786 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
787 |
+
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
788 |
+
control_guidance_start, control_guidance_end = (
|
789 |
+
mult * [control_guidance_start],
|
790 |
+
mult * [control_guidance_end],
|
791 |
+
)
|
792 |
+
|
793 |
+
# 1. Check inputs. Raise error if not correct
|
794 |
+
self.check_inputs(
|
795 |
+
prompt,
|
796 |
+
prompt_2,
|
797 |
+
image,
|
798 |
+
callback_steps,
|
799 |
+
negative_prompt,
|
800 |
+
negative_prompt_2,
|
801 |
+
prompt_embeds,
|
802 |
+
negative_prompt_embeds,
|
803 |
+
pooled_prompt_embeds,
|
804 |
+
negative_pooled_prompt_embeds,
|
805 |
+
controlnet_conditioning_scale,
|
806 |
+
control_guidance_start,
|
807 |
+
control_guidance_end,
|
808 |
+
callback_on_step_end_tensor_inputs,
|
809 |
+
)
|
810 |
+
|
811 |
+
self._guidance_scale = guidance_scale
|
812 |
+
self._clip_skip = clip_skip
|
813 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
814 |
+
|
815 |
+
# 2. Define call parameters
|
816 |
+
if prompt is not None and isinstance(prompt, str):
|
817 |
+
batch_size = 1
|
818 |
+
elif prompt is not None and isinstance(prompt, list):
|
819 |
+
batch_size = len(prompt)
|
820 |
+
else:
|
821 |
+
batch_size = prompt_embeds.shape[0]
|
822 |
+
|
823 |
+
device = self._execution_device
|
824 |
+
|
825 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
826 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
827 |
+
|
828 |
+
global_pool_conditions = (
|
829 |
+
controlnet.config.global_pool_conditions
|
830 |
+
if isinstance(controlnet, ControlNetModel)
|
831 |
+
else controlnet.nets[0].config.global_pool_conditions
|
832 |
+
)
|
833 |
+
guess_mode = guess_mode or global_pool_conditions
|
834 |
+
|
835 |
+
# 3.1 Encode input prompt
|
836 |
+
(
|
837 |
+
prompt_embeds,
|
838 |
+
negative_prompt_embeds,
|
839 |
+
pooled_prompt_embeds,
|
840 |
+
negative_pooled_prompt_embeds,
|
841 |
+
) = lpw.get_weighted_text_embeddings_sdxl(
|
842 |
+
pipe=self,
|
843 |
+
prompt=prompt,
|
844 |
+
neg_prompt=negative_prompt,
|
845 |
+
prompt_embeds=prompt_embeds,
|
846 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
847 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
848 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
849 |
+
)
|
850 |
+
|
851 |
+
# 3.2 Encode image prompt
|
852 |
+
prompt_image_emb = self._encode_prompt_image_emb(image_embeds,
|
853 |
+
device,
|
854 |
+
self.unet.dtype,
|
855 |
+
self.do_classifier_free_guidance)
|
856 |
+
|
857 |
+
# 4. Prepare image
|
858 |
+
if isinstance(controlnet, ControlNetModel):
|
859 |
+
image = self.prepare_image(
|
860 |
+
image=image,
|
861 |
+
width=width,
|
862 |
+
height=height,
|
863 |
+
batch_size=batch_size * num_images_per_prompt,
|
864 |
+
num_images_per_prompt=num_images_per_prompt,
|
865 |
+
device=device,
|
866 |
+
dtype=controlnet.dtype,
|
867 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
868 |
+
guess_mode=guess_mode,
|
869 |
+
)
|
870 |
+
height, width = image.shape[-2:]
|
871 |
+
elif isinstance(controlnet, MultiControlNetModel):
|
872 |
+
images = []
|
873 |
+
|
874 |
+
for image_ in image:
|
875 |
+
image_ = self.prepare_image(
|
876 |
+
image=image_,
|
877 |
+
width=width,
|
878 |
+
height=height,
|
879 |
+
batch_size=batch_size * num_images_per_prompt,
|
880 |
+
num_images_per_prompt=num_images_per_prompt,
|
881 |
+
device=device,
|
882 |
+
dtype=controlnet.dtype,
|
883 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
884 |
+
guess_mode=guess_mode,
|
885 |
)
|
886 |
+
|
887 |
+
images.append(image_)
|
888 |
+
|
889 |
+
image = images
|
890 |
+
height, width = image[0].shape[-2:]
|
891 |
+
else:
|
892 |
+
assert False
|
893 |
+
|
894 |
+
# 4.1 Region control
|
895 |
+
if control_mask is not None:
|
896 |
+
mask_weight_image = control_mask
|
897 |
+
mask_weight_image = np.array(mask_weight_image)
|
898 |
+
mask_weight_image_tensor = torch.from_numpy(mask_weight_image).to(device=device, dtype=prompt_embeds.dtype)
|
899 |
+
mask_weight_image_tensor = mask_weight_image_tensor[:, :, 0] / 255.
|
900 |
+
mask_weight_image_tensor = mask_weight_image_tensor[None, None]
|
901 |
+
h, w = mask_weight_image_tensor.shape[-2:]
|
902 |
+
control_mask_wight_image_list = []
|
903 |
+
for scale in [8, 8, 8, 16, 16, 16, 32, 32, 32]:
|
904 |
+
scale_mask_weight_image_tensor = F.interpolate(
|
905 |
+
mask_weight_image_tensor,(h // scale, w // scale), mode='bilinear')
|
906 |
+
control_mask_wight_image_list.append(scale_mask_weight_image_tensor)
|
907 |
+
region_mask = torch.from_numpy(np.array(control_mask)[:, :, 0]).to(self.unet.device, dtype=self.unet.dtype) / 255.
|
908 |
+
region_control.prompt_image_conditioning = [dict(region_mask=region_mask)]
|
909 |
+
else:
|
910 |
+
control_mask_wight_image_list = None
|
911 |
+
region_control.prompt_image_conditioning = [dict(region_mask=None)]
|
912 |
+
|
913 |
+
# 5. Prepare timesteps
|
914 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
915 |
+
timesteps = self.scheduler.timesteps
|
916 |
+
self._num_timesteps = len(timesteps)
|
917 |
+
|
918 |
+
# 6. Prepare latent variables
|
919 |
+
num_channels_latents = self.unet.config.in_channels
|
920 |
+
latents = self.prepare_latents(
|
921 |
+
batch_size * num_images_per_prompt,
|
922 |
+
num_channels_latents,
|
923 |
+
height,
|
924 |
+
width,
|
925 |
+
prompt_embeds.dtype,
|
926 |
+
device,
|
927 |
+
generator,
|
928 |
+
latents,
|
929 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
930 |
|
931 |
+
# 6.5 Optionally get Guidance Scale Embedding
|
932 |
+
timestep_cond = None
|
933 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
934 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
935 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
936 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
937 |
+
).to(device=device, dtype=latents.dtype)
|
938 |
+
|
939 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
940 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
941 |
+
|
942 |
+
# 7.1 Create tensor stating which controlnets to keep
|
943 |
+
controlnet_keep = []
|
944 |
+
for i in range(len(timesteps)):
|
945 |
+
keeps = [
|
946 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
947 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
948 |
+
]
|
949 |
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
950 |
+
|
951 |
+
# 7.2 Prepare added time ids & embeddings
|
952 |
+
if isinstance(image, list):
|
953 |
+
original_size = original_size or image[0].shape[-2:]
|
954 |
+
else:
|
955 |
+
original_size = original_size or image.shape[-2:]
|
956 |
+
target_size = target_size or (height, width)
|
957 |
+
|
958 |
+
add_text_embeds = pooled_prompt_embeds
|
959 |
+
if self.text_encoder_2 is None:
|
960 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
961 |
+
else:
|
962 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
963 |
+
|
964 |
+
add_time_ids = self._get_add_time_ids(
|
965 |
+
original_size,
|
966 |
+
crops_coords_top_left,
|
967 |
+
target_size,
|
968 |
+
dtype=prompt_embeds.dtype,
|
969 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
970 |
+
)
|
971 |
+
|
972 |
+
if negative_original_size is not None and negative_target_size is not None:
|
973 |
+
negative_add_time_ids = self._get_add_time_ids(
|
974 |
+
negative_original_size,
|
975 |
+
negative_crops_coords_top_left,
|
976 |
+
negative_target_size,
|
977 |
+
dtype=prompt_embeds.dtype,
|
978 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
979 |
+
)
|
980 |
+
else:
|
981 |
+
negative_add_time_ids = add_time_ids
|
982 |
+
|
983 |
+
if self.do_classifier_free_guidance:
|
984 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
985 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
986 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
987 |
+
|
988 |
+
prompt_embeds = prompt_embeds.to(device)
|
989 |
+
add_text_embeds = add_text_embeds.to(device)
|
990 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
991 |
+
encoder_hidden_states = torch.cat([prompt_embeds, prompt_image_emb], dim=1)
|
992 |
+
|
993 |
+
# 8. Denoising loop
|
994 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
995 |
+
is_unet_compiled = is_compiled_module(self.unet)
|
996 |
+
is_controlnet_compiled = is_compiled_module(self.controlnet)
|
997 |
+
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
998 |
+
|
999 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1000 |
+
for i, t in enumerate(timesteps):
|
1001 |
+
# Relevant thread:
|
1002 |
+
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
1003 |
+
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
1004 |
+
torch._inductor.cudagraph_mark_step_begin()
|
1005 |
+
# expand the latents if we are doing classifier free guidance
|
1006 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1007 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1008 |
+
|
1009 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1010 |
+
|
1011 |
+
# controlnet(s) inference
|
1012 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1013 |
+
# Infer ControlNet only for the conditional batch.
|
1014 |
+
control_model_input = latents
|
1015 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1016 |
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1017 |
+
controlnet_added_cond_kwargs = {
|
1018 |
+
"text_embeds": add_text_embeds.chunk(2)[1],
|
1019 |
+
"time_ids": add_time_ids.chunk(2)[1],
|
1020 |
+
}
|
1021 |
+
else:
|
1022 |
+
control_model_input = latent_model_input
|
1023 |
+
controlnet_prompt_embeds = prompt_embeds
|
1024 |
+
controlnet_added_cond_kwargs = added_cond_kwargs
|
1025 |
+
|
1026 |
+
if isinstance(controlnet_keep[i], list):
|
1027 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
1028 |
+
else:
|
1029 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
1030 |
+
if isinstance(controlnet_cond_scale, list):
|
1031 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
1032 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
1033 |
+
|
1034 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1035 |
+
control_model_input,
|
1036 |
+
t,
|
1037 |
+
encoder_hidden_states=prompt_image_emb,
|
1038 |
+
controlnet_cond=image,
|
1039 |
+
conditioning_scale=cond_scale,
|
1040 |
+
guess_mode=guess_mode,
|
1041 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
1042 |
+
return_dict=False,
|
1043 |
+
)
|
1044 |
+
|
1045 |
+
# controlnet mask
|
1046 |
+
if control_mask_wight_image_list is not None:
|
1047 |
+
down_block_res_samples = [
|
1048 |
+
down_block_res_sample * mask_weight
|
1049 |
+
for down_block_res_sample, mask_weight in zip(down_block_res_samples, control_mask_wight_image_list)
|
1050 |
+
]
|
1051 |
+
mid_block_res_sample *= control_mask_wight_image_list[-1]
|
1052 |
+
|
1053 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1054 |
+
# Infered ControlNet only for the conditional batch.
|
1055 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1056 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
1057 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1058 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1059 |
+
|
1060 |
+
# predict the noise residual
|
1061 |
+
noise_pred = self.unet(
|
1062 |
+
latent_model_input,
|
1063 |
+
t,
|
1064 |
+
encoder_hidden_states=encoder_hidden_states,
|
1065 |
+
timestep_cond=timestep_cond,
|
1066 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1067 |
+
down_block_additional_residuals=down_block_res_samples,
|
1068 |
+
mid_block_additional_residual=mid_block_res_sample,
|
1069 |
+
added_cond_kwargs=added_cond_kwargs,
|
1070 |
+
return_dict=False,
|
1071 |
+
)[0]
|
1072 |
+
|
1073 |
+
# perform guidance
|
1074 |
+
if self.do_classifier_free_guidance:
|
1075 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1076 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1077 |
+
|
1078 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1079 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1080 |
+
|
1081 |
+
if callback_on_step_end is not None:
|
1082 |
+
callback_kwargs = {}
|
1083 |
+
for k in callback_on_step_end_tensor_inputs:
|
1084 |
+
callback_kwargs[k] = locals()[k]
|
1085 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1086 |
+
|
1087 |
+
latents = callback_outputs.pop("latents", latents)
|
1088 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1089 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1090 |
+
|
1091 |
+
# call the callback, if provided
|
1092 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1093 |
+
progress_bar.update()
|
1094 |
+
if callback is not None and i % callback_steps == 0:
|
1095 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1096 |
+
callback(step_idx, t, latents)
|
1097 |
+
|
1098 |
+
if not output_type == "latent":
|
1099 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1100 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1101 |
+
if needs_upcasting:
|
1102 |
+
self.upcast_vae()
|
1103 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1104 |
+
|
1105 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1106 |
+
|
1107 |
+
# cast back to fp16 if needed
|
1108 |
+
if needs_upcasting:
|
1109 |
+
self.vae.to(dtype=torch.float16)
|
1110 |
+
else:
|
1111 |
+
image = latents
|
1112 |
+
|
1113 |
+
if not output_type == "latent":
|
1114 |
+
# apply watermark if available
|
1115 |
+
if self.watermark is not None:
|
1116 |
+
image = self.watermark.apply_watermark(image)
|
1117 |
+
|
1118 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1119 |
+
|
1120 |
+
# Offload all models
|
1121 |
+
self.maybe_free_model_hooks()
|
1122 |
+
|
1123 |
+
if not return_dict:
|
1124 |
+
return (image,)
|
1125 |
+
|
1126 |
+
return StableDiffusionXLPipelineOutput(images=image)
|