import os import tyro import imageio import numpy as np import tqdm import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms.functional as TF from safetensors.torch import load_file import rembg import gradio as gr # download checkpoints from huggingface_hub import hf_hub_download ckpt_path = hf_hub_download(repo_id="ashawkey/LGM", filename="model_fp16.safetensors") # NOTE: no -e... else it's not working! os.system("pip install ./diff-gaussian-rasterization") import kiui from kiui.op import recenter from kiui.cam import orbit_camera from core.options import AllConfigs, Options from core.models import LGM from mvdream.pipeline_mvdream import MVDreamPipeline #import spaces IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) GRADIO_VIDEO_PATH = 'gradio_output.mp4' GRADIO_PLY_PATH = 'gradio_output.ply' # opt = tyro.cli(AllConfigs) opt = Options( input_size=256, up_channels=(1024, 1024, 512, 256, 128), # one more decoder up_attention=(True, True, True, False, False), splat_size=128, output_size=512, # render & supervise Gaussians at a higher resolution. batch_size=8, num_views=8, gradient_accumulation_steps=1, mixed_precision='bf16', resume=ckpt_path, ) # model model = LGM(opt) # resume pretrained checkpoint if opt.resume is not None: if opt.resume.endswith('safetensors'): ckpt = load_file(opt.resume, device='cpu') else: ckpt = torch.load(opt.resume, map_location='cpu') model.load_state_dict(ckpt, strict=False) print(f'[INFO] Loaded checkpoint from {opt.resume}') else: print(f'[WARN] model randomly initialized, are you sure?') if torch.backends.mps.is_available(): device = "mps" elif torch.cuda.is_available(): device = "cuda" else: device = "cpu" #device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = model.half().to(device) model.eval() tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy)) proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=device) proj_matrix[0, 0] = 1 / tan_half_fov proj_matrix[1, 1] = 1 / tan_half_fov proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear) proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear) proj_matrix[2, 3] = 1 # load dreams pipe_text = MVDreamPipeline.from_pretrained( 'ashawkey/mvdream-sd2.1-diffusers', # remote weights torch_dtype=torch.float16, trust_remote_code=True, # local_files_only=True, ) pipe_text = pipe_text.to(device) pipe_image = MVDreamPipeline.from_pretrained( "ashawkey/imagedream-ipmv-diffusers", # remote weights torch_dtype=torch.float16, trust_remote_code=True, # local_files_only=True, ) pipe_image = pipe_image.to(device) # load rembg bg_remover = rembg.new_session() # process function #@spaces.GPU def process(input_image, prompt, prompt_neg='', input_elevation=0, input_num_steps=30, input_seed=42): # seed kiui.seed_everything(input_seed) os.makedirs(opt.workspace, exist_ok=True) output_video_path = os.path.join(opt.workspace, GRADIO_VIDEO_PATH) output_ply_path = os.path.join(opt.workspace, GRADIO_PLY_PATH) # text-conditioned if input_image is None: mv_image_uint8 = pipe_text(prompt, negative_prompt=prompt_neg, num_inference_steps=input_num_steps, guidance_scale=7.5, elevation=input_elevation) mv_image_uint8 = (mv_image_uint8 * 255).astype(np.uint8) # bg removal mv_image = [] for i in range(4): image = rembg.remove(mv_image_uint8[i], session=bg_remover) # [H, W, 4] # to white bg image = image.astype(np.float32) / 255 image = recenter(image, image[..., 0] > 0, border_ratio=0.2) image = image[..., :3] * image[..., -1:] + (1 - image[..., -1:]) mv_image.append(image) # image-conditioned (may also input text, but no text usually works too) else: input_image = np.array(input_image) # uint8 # bg removal carved_image = rembg.remove(input_image, session=bg_remover) # [H, W, 4] mask = carved_image[..., -1] > 0 image = recenter(carved_image, mask, border_ratio=0.2) image = image.astype(np.float32) / 255.0 image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4]) mv_image = pipe_image(prompt, image, negative_prompt=prompt_neg, num_inference_steps=input_num_steps, guidance_scale=5.0, elevation=input_elevation) mv_image_grid = np.concatenate([ np.concatenate([mv_image[1], mv_image[2]], axis=1), np.concatenate([mv_image[3], mv_image[0]], axis=1), ], axis=0) # generate gaussians input_image = np.stack([mv_image[1], mv_image[2], mv_image[3], mv_image[0]], axis=0) # [4, 256, 256, 3], float32 input_image = torch.from_numpy(input_image).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256] input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False) input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) rays_embeddings = model.prepare_default_rays(device, elevation=input_elevation) input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W] with torch.no_grad(): with torch.autocast(device_type='cuda', dtype=torch.float16): # generate gaussians gaussians = model.forward_gaussians(input_image) # save gaussians model.gs.save_ply(gaussians, output_ply_path) # render 360 video images = [] elevation = 0 if opt.fancy_video: azimuth = np.arange(0, 720, 4, dtype=np.int32) for azi in tqdm.tqdm(azimuth): cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device) cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction # cameras needed by gaussian rasterizer cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4] cam_view_proj = cam_view @ proj_matrix # [V, 4, 4] cam_pos = - cam_poses[:, :3, 3] # [V, 3] scale = min(azi / 360, 1) image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=scale)['image'] images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8)) else: azimuth = np.arange(0, 360, 2, dtype=np.int32) for azi in tqdm.tqdm(azimuth): cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device) cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction # cameras needed by gaussian rasterizer cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4] cam_view_proj = cam_view @ proj_matrix # [V, 4, 4] cam_pos = - cam_poses[:, :3, 3] # [V, 3] image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=1)['image'] images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8)) images = np.concatenate(images, axis=0) imageio.mimwrite(output_video_path, images, fps=30) return mv_image_grid, output_video_path, output_ply_path # gradio UI _TITLE = '''LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation''' _DESCRIPTION = '''
* Input can be only text, only image, or both image and text. * If you find the output unsatisfying, try using different seeds! ''' block = gr.Blocks(title=_TITLE).queue() with block: with gr.Row(): with gr.Column(scale=1): gr.Markdown('# ' + _TITLE) gr.Markdown(_DESCRIPTION) with gr.Row(variant='panel'): with gr.Column(scale=1): # input image input_image = gr.Image(label="image", type='pil') # input prompt input_text = gr.Textbox(label="prompt") # negative prompt input_neg_text = gr.Textbox(label="negative prompt", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate') # elevation input_elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0) # inference steps input_num_steps = gr.Slider(label="inference steps", minimum=1, maximum=100, step=1, value=30) # random seed input_seed = gr.Slider(label="random seed", minimum=0, maximum=100000, step=1, value=0) # gen button button_gen = gr.Button("Generate") with gr.Column(scale=1): with gr.Tab("Video"): # final video results output_video = gr.Video(label="video") # ply file output_file = gr.File(label="ply") with gr.Tab("Multi-view Image"): # multi-view results output_image = gr.Image(interactive=False, show_label=False) button_gen.click(process, inputs=[input_image, input_text, input_neg_text, input_elevation, input_num_steps, input_seed], outputs=[output_image, output_video, output_file]) gr.Examples( examples=[ "data_test/anya_rgba.png", "data_test/bird_rgba.png", "data_test/catstatue_rgba.png", ], inputs=[input_image], outputs=[output_image, output_video, output_file], fn=lambda x: process(input_image=x, prompt=''), cache_examples=False, label='Image-to-3D Examples' ) gr.Examples( examples=[ "a motorbike", "a hamburger", "a furry red fox head", ], inputs=[input_text], outputs=[output_image, output_video, output_file], fn=lambda x: process(input_image=None, prompt=x), cache_examples=False, label='Text-to-3D Examples' ) block.launch()