Spaces:
Runtime error
Runtime error
File size: 12,985 Bytes
49bae8f abbf8c3 49bae8f abbf8c3 49bae8f abbf8c3 49bae8f abbf8c3 49bae8f 15f5821 49bae8f 079479b 49bae8f abbf8c3 49bae8f abbf8c3 49bae8f 4dcb992 49bae8f abbf8c3 49bae8f abbf8c3 49bae8f abbf8c3 49bae8f abbf8c3 49bae8f abbf8c3 f0b9014 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import base64
import os
import shutil
import tempfile
from io import BytesIO
import gradio as gr
import numpy as np
import torch
import torchvision.transforms as transforms
from decord import VideoReader
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoModel, AutoTokenizer
import spaces
title_markdown = ("""
<div style="display: flex; justify-content: flex-start; align-items: center; text-align: center;">
<div style="margin-right: 20px; display: flex; align-items: center;">
<a href="https://github.com/ShareGPT4Omni/ShareGPT4Video" style="text-decoration: none; display: flex; align-items: center;">
<img src="https://raw.githubusercontent.com/ShareGPT4V/ShareGPT4V-Resources/master/images/share4video_tight.png" alt="ShareGPT4Video🚀" style="max-width: 120px; height: auto;">
</a>
</div>
<div>
<h1>ShareGPT4Video: Improving Video Understanding and Generation with Better Captions</h1>
<h5 style="margin: 0;">If you like our project, please give us a star ✨ on Github for the latest update.</h5>
<h5 style="margin: 0;"> <a href="https://sharegpt4video.github.io/">[Project Page]</a> <a href="https://github.com/ShareGPT4Omni/ShareGPT4Video">[Code]</a> <a href="https://arxiv.org/abs/2406.04325v1">[Paper]</a>
</div>
</div>
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")
new_path = 'Lin-Chen/ShareCaptioner-Video'
tokenizer = AutoTokenizer.from_pretrained(new_path, trust_remote_code=True)
model = AutoModel.from_pretrained(
new_path, torch_dtype=torch.float16, trust_remote_code=True).cuda().eval()
model.cuda()
model.tokenizer = tokenizer
def padding_336(b, pad=336):
width, height = b.size
tar = int(np.ceil(height / pad) * pad)
top_padding = int((tar - height)/2)
bottom_padding = tar - height - top_padding
left_padding = 0
right_padding = 0
b = transforms.functional.pad(
b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255, 255, 255])
return b
def HD_transform(img, hd_num=25):
width, height = img.size
trans = False
if width < height:
img = img.transpose(Image.TRANSPOSE)
trans = True
width, height = img.size
ratio = (width / height)
scale = 1
while scale*np.ceil(scale/ratio) <= hd_num:
scale += 1
scale -= 1
new_w = int(scale * 336)
new_h = int(new_w / ratio)
img = transforms.functional.resize(img, [new_h, new_w],)
img = padding_336(img, 336)
width, height = img.size
if trans:
img = img.transpose(Image.TRANSPOSE)
return img
def get_seq_frames(total_num_frames, desired_num_frames, start=None, end=None):
if start is None:
assert end is None
start, end = 0, total_num_frames
print(f"{start=}, {end=}")
desired_num_frames -= 2
end = min(total_num_frames, end)
start = max(start, 0)
seg_size = float((end - start)) / desired_num_frames
seq = [start]
for i in range(desired_num_frames):
s = int(np.round(seg_size * i))
e = int(np.round(seg_size * (i + 1)))
seq.append(min(int(start + (s + e) // 2), total_num_frames-1))
return seq + [end-1]
def model_gen(model, text, images, need_bos=True, hd_num=25, max_new_token=2048, beam=3, do_sample=False):
pt1 = 0
embeds = []
im_mask = []
if images is None:
images = []
images_loc = []
else:
images = [images]
images_loc = [0]
for i, pts in enumerate(images_loc + [len(text)]):
subtext = text[pt1:pts]
if need_bos or len(subtext) > 0:
text_embeds = model.encode_text(
subtext, add_special_tokens=need_bos)
embeds.append(text_embeds)
im_mask.append(torch.zeros(text_embeds.shape[:2]).cuda())
need_bos = False
if i < len(images):
try:
image = Image.open(images[i]).convert('RGB')
except:
image = images[i].convert('RGB')
image = HD_transform(image, hd_num=hd_num)
image = model.vis_processor(image).unsqueeze(0).cuda()
image_embeds = model.encode_img(image)
print(image_embeds.shape)
embeds.append(image_embeds)
im_mask.append(torch.ones(image_embeds.shape[:2]).cuda())
pt1 = pts
embeds = torch.cat(embeds, dim=1)
im_mask = torch.cat(im_mask, dim=1)
im_mask = im_mask.bool()
outputs = model.generate(inputs_embeds=embeds, im_mask=im_mask,
temperature=1.0, max_new_tokens=max_new_token, num_beams=beam,
do_sample=False, repetition_penalty=1.00)
output_token = outputs[0]
if output_token[0] == 0 or output_token[0] == 1:
output_token = output_token[1:]
output_text = model.tokenizer.decode(
output_token, add_special_tokens=False)
output_text = output_text.split('[UNUSED_TOKEN_145]')[0].strip()
output_text = output_text.split('<|im_end|>')[0].strip()
return output_text
def img_process(imgs):
new_w = 0
new_h = 0
for im in imgs:
w, h = im.size
new_w = max(new_w, w)
new_h += h + 20
pad = max(new_w // 4, 100)
new_w += 20
new_h += 20
font = ImageFont.truetype("SimHei.ttf", pad // 5)
new_img = Image.new('RGB', (new_w + pad, new_h), 'white')
draw = ImageDraw.Draw(new_img)
curr_h = 10
for idx, im in enumerate(imgs):
w, h = im.size
new_img.paste(im, (pad, curr_h))
draw.text((0, curr_h + h // 2),
f'<IMAGE {idx}>', font=font, fill='black')
if idx + 1 < len(imgs):
draw.line([(0, curr_h + h + 10), (new_w+pad,
curr_h + h + 10)], fill='black', width=2)
curr_h += h + 20
return new_img
def load_quota_video(vis_path, start=None, end=None):
vr = VideoReader(vis_path)
total_frame_num = len(vr)
fps = vr.get_avg_fps()
if start is not None:
assert end is not None
start_frame = int(start * fps)
end_frame = min(int(end * fps), total_frame_num)
else:
start_frame = 0
end_frame = total_frame_num
interval = int(2 * fps)
frame_idx = list(range(start_frame, end_frame, interval))
img_array = vr.get_batch(frame_idx).asnumpy()
num_frm, H, W, _ = img_array.shape
img_array = img_array.reshape(
(1, num_frm, img_array.shape[-3], img_array.shape[-2], img_array.shape[-1]))
clip_imgs = []
for j in range(num_frm):
clip_imgs.append(Image.fromarray(img_array[0, j]))
return clip_imgs
def resize_image(image_path, max_size=1024):
with Image.open(image_path) as img:
width, height = img.size
if width > max_size or height > max_size:
if width > height:
new_width = max_size
new_height = int(height * (max_size / width))
else:
new_height = max_size
new_width = int(width * (max_size / height))
else:
new_width = width
new_height = height
resized_img = img.resize((new_width, new_height))
print(f"resized_img_size: {resized_img.size}")
return resized_img
def encode_resized_image(image_path, max_size=1024):
resized_img = resize_image(image_path, max_size)
try:
with BytesIO() as buffer:
resized_img.save(buffer, format="JPEG")
return base64.b64encode(buffer.getvalue()).decode('utf-8')
except:
with BytesIO() as buffer:
rgb_img = resized_img.convert('RGB')
rgb_img.save(buffer, format="JPEG")
return base64.b64encode(buffer.getvalue()).decode('utf-8')
@spaces.GPU(duration=60)
def generate_slidingcaptioning(video_path):
imgs = load_quota_video(video_path)
q = 'This is the first frame of a video, describe it in detail.'
query = f'[UNUSED_TOKEN_146]user\n{q}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n'
img = imgs[0]
with torch.cuda.amp.autocast():
response = model_gen(model, query, img, hd_num=9)
print(response)
responses = [response]
images = [img]
for idx in range(len(imgs)-1):
image1 = imgs[idx]
image2 = imgs[idx+1]
prompt = "Here are the Video frame {} at {}.00 Second(s) and Video frame {} at {}.00 Second(s) of a video, describe what happend between them. What happend before is: {}".format(
idx, int(idx*2), idx+1, int((idx+1)*2), response)
width, height = image1.size
new_img = Image.new('RGB', (width, 2*height+50), 'white')
new_img.paste(image1, (0, 0))
new_img.paste(image2, (0, height+50))
query = f'[UNUSED_TOKEN_146]user\n{prompt}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n'
with torch.cuda.amp.autocast():
response = model_gen(model, query, new_img, hd_num=9)
responses.append(response)
images.append(new_img)
prompt = 'Summarize the following per frame descriptions:\n'
for idx, txt in enumerate(responses):
prompt += 'Video frame {} at {}.00 Second(s) description: {}\n'.format(
idx+1, idx*2, txt)
query = f'[UNUSED_TOKEN_146]user\n{prompt}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n'
print(query)
with torch.cuda.amp.autocast():
summ = model_gen(model, query, None, hd_num=16)
print(summ)
return summ
@spaces.GPU(duration=60)
def generate_fastcaptioning(video_path):
q = 'Here are a few key frames of a video, discribe this video in detail.'
query = f'[UNUSED_TOKEN_146]user\n{q}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n'
imgs = load_quota_video(video_path)
img = img_process(imgs)
with torch.cuda.amp.autocast():
response = model_gen(model, query, img, hd_num=16,
do_sample=False, beam=3)
return response
@spaces.GPU(duration=60)
def generate_promptrecaptioning(text):
q = f'Translate this brief generation prompt into a detailed caption: {text}'
query = f'[UNUSED_TOKEN_146]user\n{q}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n'
with torch.cuda.amp.autocast():
response = model_gen(model, query, None)
return response
def save_video_to_local(video_path):
filename = os.path.join('temp', next(
tempfile._get_candidate_names()) + '.mp4')
shutil.copyfile(video_path, filename)
return filename
with gr.Blocks(title='ShareCaptioner-Video', theme=gr.themes.Default(), css=block_css) as demo:
gr.Markdown(title_markdown)
state = gr.State()
state_ = gr.State()
first_run = gr.State()
with gr.Row():
gr.Markdown("### The ShareCaptioner-Video is a Four-in-One exceptional video captioning model with the following capabilities:\n1. Fast captioning, 2. Sliding Captioning, 3. Clip Summarizing, 4. Prompt Re-Captioning")
with gr.Row():
gr.Markdown("(THE DEMO OF \"Clip Summarizing\" IS COMING SOON...)")
with gr.Row():
with gr.Column(scale=6):
with gr.Row():
video = gr.Video(label="Input Video")
with gr.Row():
textbox = gr.Textbox(
show_label=False, placeholder="Input Text", container=False
)
with gr.Row():
with gr.Column(scale=2, min_width=50):
submit_btn_sc = gr.Button(
value="Sliding Captioning", variant="primary", interactive=True
)
with gr.Column(scale=2, min_width=50):
submit_btn_fc = gr.Button(
value="Fast Captioning", variant="primary", interactive=True
)
with gr.Column(scale=2, min_width=50):
submit_btn_pr = gr.Button(
value="Prompt Re-captioning", variant="primary", interactive=True
)
with gr.Column(scale=4, min_width=200):
with gr.Row():
textbox_out = gr.Textbox(
show_label=False, placeholder="Output", container=False
)
gr.Markdown(learn_more_markdown)
submit_btn_sc.click(generate_slidingcaptioning, [video], [textbox_out])
submit_btn_fc.click(generate_fastcaptioning, [video], [textbox_out])
submit_btn_pr.click(generate_promptrecaptioning, [textbox], [textbox_out])
demo.launch()
|