Spaces:
Runtime error
Runtime error
import os | |
import argparse | |
import json | |
import ast | |
import traceback | |
from tqdm import tqdm | |
from multiprocessing.pool import Pool | |
from openai import AzureOpenAI | |
def init(): | |
client = AzureOpenAI( | |
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"), | |
api_key=os.getenv("AZURE_OPENAI_KEY"), | |
api_version="2024-02-15-preview" | |
) | |
return client | |
def interaction(client, message_text): | |
completion = client.chat.completions.create( | |
model=os.getenv("AZURE_OPENAI_DEPLOYNAME"), | |
messages = message_text, | |
temperature=0.7, | |
max_tokens=800, | |
top_p=0.95, | |
frequency_penalty=0, | |
presence_penalty=0, | |
stop=None | |
) | |
return completion | |
def annotate(prediction_set, caption_files, output_dir, args): | |
for file in tqdm(caption_files): | |
key = file[:-5] # Strip file extension | |
qa_set = prediction_set[key] | |
question = qa_set['q'] | |
answer = qa_set['a'] | |
pred = qa_set['p'] | |
try: | |
message = [ | |
{ | |
"role": "system", | |
"content": | |
"You are an intelligent chatbot designed for evaluating the temporal understanding of generative outputs for video-based question-answer pairs. " | |
"Your task is to compare the predicted answer with the correct answer and determine if they correctly reflect the temporal sequence of events in the video content. Here's how you can accomplish the task:" | |
"------" | |
"##INSTRUCTIONS: " | |
"- Focus on the temporal consistency between the predicted answer and the correct answer. The predicted answer should correctly reflect the sequence of events or details as they are presented in the video content.\n" | |
"- Consider synonyms or paraphrases as valid matches, but only if the temporal order is maintained.\n" | |
"- Evaluate the temporal accuracy of the prediction compared to the answer." | |
}, | |
{ | |
"role": "user", | |
"content": | |
"Please evaluate the following video-based question-answer pair:\n\n" | |
f"Question: {question}\n" | |
f"Correct Answer: {answer}\n" | |
f"Predicted Answer: {pred}\n\n" | |
"Provide your evaluation only as a temporal accuracy score where the temporal accuracy score is an integer value between 0 and 5, with 5 indicating the highest level of temporal consistency. " | |
"Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the temporal accuracy score in INTEGER, not STRING." | |
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. " | |
"For example, your response should look like this: {''score': 4.8}." | |
} | |
] | |
completion = interaction(client, message) | |
# Convert response to a Python dictionary. | |
response_message = completion.choices[0].message.content | |
response_dict = ast.literal_eval(response_message) | |
result_qa_pair = [response_dict, qa_set] | |
# Save the question-answer pairs to a json file. | |
with open(f"{output_dir}/{key}.json", "w") as f: | |
json.dump(result_qa_pair, f) | |
except Exception as e: | |
print(f"Error processing file '{key}': {e}") | |
def main(args): | |
pred_contents = [eval(line) for line in open(args.pred_path, 'r').readlines()] | |
# Dictionary to store the count of occurrences for each video_id | |
video_id_counts = {} | |
new_pred_contents = [] | |
# Iterate through each sample in pred_contents | |
for sample in pred_contents: | |
video_id = sample['video_name'] | |
if video_id in video_id_counts: | |
video_id_counts[video_id] += 1 | |
else: | |
video_id_counts[video_id] = 0 | |
# Create a new sample with the modified key | |
new_sample = sample | |
new_sample['video_name'] = f"{video_id}_{video_id_counts[video_id]}" | |
new_pred_contents.append(new_sample) | |
# Generating list of id's and corresponding files | |
id_list = [x['video_name'] for x in new_pred_contents] | |
caption_files = [f"{id}.json" for id in id_list] | |
output_dir = args.output_dir | |
# Generate output directory if not exists. | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
# Preparing dictionary of question-answer sets | |
prediction_set = {} | |
for sample in new_pred_contents: | |
id = sample['video_name'] | |
question = sample['Q'] | |
answer = sample['A'] | |
pred = sample['P'] | |
qa_set = {"q": question, "a": answer, "p": pred} | |
prediction_set[id] = qa_set | |
# Set the OpenAI API key. | |
# openai.api_key = args.api_key | |
num_tasks = args.num_tasks | |
# While loop to ensure that all captions are processed. | |
while True: | |
try: | |
# Files that have not been processed yet. | |
completed_files = os.listdir(output_dir) | |
print(f"completed_files: {len(completed_files)}") | |
# Files that have not been processed yet. | |
incomplete_files = [f for f in caption_files if f not in completed_files] | |
print(f"incomplete_files: {len(incomplete_files)}") | |
# Break the loop when there are no incomplete files | |
if len(incomplete_files) == 0: | |
break | |
if len(incomplete_files) <= num_tasks: | |
num_tasks = 1 | |
# Split tasks into parts. | |
part_len = len(incomplete_files) // num_tasks | |
all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)] | |
task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts] | |
# Use a pool of workers to process the files in parallel. | |
with Pool() as pool: | |
pool.starmap(annotate, task_args) | |
except Exception as e: | |
print(f"Error: {e}") | |
# Combine all the processed files into one | |
combined_contents = {} | |
json_path = args.output_json | |
# Iterate through json files | |
for file_name in os.listdir(output_dir): | |
if file_name.endswith(".json"): | |
file_path = os.path.join(output_dir, file_name) | |
with open(file_path, "r") as json_file: | |
content = json.load(json_file) | |
combined_contents[file_name[:-5]] = content | |
# Write combined content to a json file | |
with open(json_path, "w") as json_file: | |
json.dump(combined_contents, json_file) | |
print("All evaluation completed!") | |
# Calculate average score | |
score_sum = 0 | |
count = 0 | |
for key, result in combined_contents.items(): | |
count += 1 | |
score_match = result[0]['score'] | |
score = int(score_match) | |
score_sum += score | |
average_score = score_sum / count | |
print("Average score temporal understanding:", average_score) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3") | |
parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.") | |
parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.") | |
parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.") | |
parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.") | |
parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.") | |
parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.") | |
parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.") | |
args = parser.parse_args() | |
# Set the OpenAI API key. | |
os.environ["AZURE_OPENAI_KEY"] = args.api_key | |
os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint | |
os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname | |
client = init() | |
main(args) | |