Spaces:
Runtime error
Runtime error
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright: | |
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from abc import ABC, abstractmethod | |
import einops | |
import torch | |
import torch.nn as nn | |
from .multimodal_encoder.builder import build_vision_tower | |
from .multimodal_projector.builder import build_vision_projector | |
from ..mm_utils import get_anyres_image_grid_shape | |
from ..constants import NUM_FRAMES, IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN,DEFAULT_MMODAL_PATCH_TOKEN, DEFAULT_MMODAL_START_TOKEN, DEFAULT_MMODAL_END_TOKEN, MMODAL_TOKEN_INDEX | |
class Videollama2MetaModel: | |
def __init__(self, config): | |
super(Videollama2MetaModel, self).__init__(config) | |
if hasattr(config, "mm_vision_tower"): | |
self.vision_tower = build_vision_tower(config, delay_load=True) | |
self.mm_projector = build_vision_projector(config) | |
def get_vision_tower(self): | |
vision_tower = getattr(self, 'vision_tower', None) | |
if type(vision_tower) is list: | |
vision_tower = vision_tower[0] | |
return vision_tower | |
def initialize_vision_modules(self, model_args, fsdp=None): | |
vision_tower = model_args.vision_tower | |
mm_vision_select_layer = model_args.mm_vision_select_layer | |
mm_vision_select_feature = model_args.mm_vision_select_feature | |
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter | |
self.config.mm_vision_tower = vision_tower | |
if self.get_vision_tower() is None: | |
vision_tower = build_vision_tower(model_args) | |
if fsdp is not None and len(fsdp) > 0: | |
self.vision_tower = [vision_tower] | |
else: | |
self.vision_tower = vision_tower | |
else: | |
if fsdp is not None and len(fsdp) > 0: | |
vision_tower = self.vision_tower[0] | |
else: | |
vision_tower = self.vision_tower | |
vision_tower.load_model() | |
self.config.use_mm_proj = True | |
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') | |
self.config.mm_hidden_size = vision_tower.hidden_size | |
self.config.mm_vision_select_layer = mm_vision_select_layer | |
self.config.mm_vision_select_feature = mm_vision_select_feature | |
if getattr(self, 'mm_projector', None) is None: | |
self.mm_projector = build_vision_projector(self.config) | |
else: | |
# In case it is frozen by LoRA | |
for p in self.mm_projector.parameters(): | |
p.requires_grad = True | |
if pretrain_mm_mlp_adapter is not None: | |
if os.path.exists(pretrain_mm_mlp_adapter): | |
is_local = True | |
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') | |
else: | |
# Support loading projector weights from remote HuggingFace model hub | |
is_local = False | |
pretrain_mm_mlp_adapter = pretrain_mm_mlp_adapter.replace('mm_projector.bin', '') | |
pretrain_mm_mlp_adapter = pretrain_mm_mlp_adapter.strip('/').strip('\\').strip() | |
mm_projector_weights = load_mm_projector(pretrain_mm_mlp_adapter) | |
def get_w(weights, keyword): | |
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} | |
# self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) | |
# set strict=False to avoid missing key error regarding bert.embeddings.position_ids | |
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), strict=False) | |
class Videollama2MetaForCausalLM(ABC): | |
def get_model(self): | |
pass | |
def num_frames(self): | |
if hasattr(self.config, 'num_frames'): | |
return self.config.num_frames | |
else: | |
return NUM_FRAMES | |
def get_vision_tower(self): | |
return self.get_model().get_vision_tower() | |
def encode_images_or_videos(self, images_or_videos, modalities): | |
num_frames = self.config.num_frames if hasattr(self.config, 'num_frames') else NUM_FRAMES | |
videos = [x.unsqueeze(0).expand(num_frames, -1, -1, -1) if modal == 'image' else x for x, modal in zip(images_or_videos, modalities)] | |
videos = torch.stack(videos, dim=0) | |
assert len(videos.size()) == 5 | |
batch_size = videos.size(0) | |
frames = einops.rearrange(videos, 'b t c h w -> (b t) c h w') | |
frames_features = self.get_model().get_vision_tower()(frames) | |
frames_features = einops.rearrange(frames_features, '(b t) n h -> b t n h', b = batch_size) | |
return self.temporal_aggregator(frames_features) | |
def temporal_aggregator(self, frames_features): | |
"""Temporal aggregation of frame features. | |
Args: | |
frames_features (torch.Tensor): Frame features with shape (b, t, n, h). | |
Returns: | |
torch.Tensor: Video features with shape (b, n, h). | |
""" | |
# TODO: improve the merging method. | |
# *********** mean pooling ************* | |
if self.config.mm_projector_type == "mlp2x_gelu" or self.config.mm_projector_type == "linear": | |
video_features = self.get_model().mm_projector(frames_features.mean(1)) | |
# *********** spatial convolution ************* | |
elif self.config.mm_projector_type == "spatial_conv": | |
video_features = self.get_model().mm_projector(frames_features) | |
# *********** spatial pooling ************* | |
elif self.config.mm_projector_type == "spatial_pool": | |
video_features = self.get_model().mm_projector(frames_features) | |
# *********** time ************ | |
elif "tc_connector" in self.config.mm_projector_type or "tp_connector" in self.config.mm_projector_type: | |
video_features = self.get_model().mm_projector(frames_features) | |
else: | |
raise Exception(f"Unsupported projector type {self.config.mm_projector_type}!!!") | |
return video_features | |
def prepare_inputs_labels_for_multimodal( | |
self, input_ids, attention_mask, past_key_values, labels, X_modalities | |
): | |
vision_tower = self.get_vision_tower() | |
# NOTE: text-only situation | |
if vision_tower is None or X_modalities is None or input_ids.shape[1] == 1: | |
# if past_key_values is not None and vision_tower is not None and Xs is not None and input_ids.shape[1] == 1: | |
# attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device) | |
return input_ids, attention_mask, past_key_values, None, labels | |
Xs, keys = X_modalities | |
X_features = self.encode_images_or_videos(Xs, keys) | |
new_input_embeds = [] | |
new_labels = [] if labels is not None else None | |
cur_X_idx = 0 | |
# replace image/video/audio tokens with pre-computed embeddings | |
for batch_idx, cur_input_ids in enumerate(input_ids): | |
# cur_X_features = X_features[batch_idx] | |
if (torch.any(torch.stack([cur_input_ids == MMODAL_TOKEN_INDEX[key.upper()] for key in keys]), dim=0)).sum() == 0: | |
half_len = cur_input_ids.shape[0] // 2 | |
cur_X_features = X_features[cur_X_idx] | |
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len]) | |
cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:]) | |
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_X_features[0:0], cur_input_embeds_2], dim=0) | |
new_input_embeds.append(cur_input_embeds) | |
if labels is not None: | |
new_labels.append(labels[batch_idx]) | |
cur_X_idx += 1 | |
continue | |
X_token_indices = torch.where(torch.any(torch.stack([cur_input_ids == MMODAL_TOKEN_INDEX[key.upper()] for key in keys]), dim=0))[0] | |
cur_new_input_embeds = [] | |
if labels is not None: | |
cur_labels = labels[batch_idx] | |
cur_new_labels = [] | |
assert cur_labels.shape == cur_input_ids.shape | |
# X_index_inonesample = 0 | |
while X_token_indices.numel() > 0: | |
cur_X_features = X_features[cur_X_idx] | |
X_token_start = X_token_indices[0] | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:X_token_start])) | |
cur_new_input_embeds.append(cur_X_features) | |
if labels is not None: | |
cur_new_labels.append(cur_labels[:X_token_start]) | |
cur_new_labels.append(torch.full((cur_X_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) | |
cur_labels = cur_labels[X_token_start+1:] | |
cur_X_idx += 1 | |
cur_input_ids = cur_input_ids[X_token_start+1:] | |
X_token_indices = torch.where(torch.any(torch.stack([cur_input_ids == MMODAL_TOKEN_INDEX[key.upper()] for key in keys]), dim=0))[0] | |
if cur_input_ids.numel() > 0: | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) | |
if labels is not None: | |
cur_new_labels.append(cur_labels) | |
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] | |
# NOTE: one cur_new_input_embeds per each | |
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) | |
new_input_embeds.append(cur_new_input_embeds) | |
if labels is not None: | |
cur_new_labels = torch.cat(cur_new_labels, dim=0) | |
new_labels.append(cur_new_labels) | |
# padding | |
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): | |
max_len = max(x.shape[0] for x in new_input_embeds) | |
new_input_embeds_align = [] | |
for cur_new_embed in new_input_embeds: | |
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) | |
new_input_embeds_align.append(cur_new_embed) | |
new_input_embeds = torch.stack(new_input_embeds_align, dim=0) | |
if labels is not None: | |
new_labels_align = [] | |
_new_labels = new_labels | |
for cur_new_label in new_labels: | |
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) | |
new_labels_align.append(cur_new_label) | |
new_labels = torch.stack(new_labels_align, dim=0) | |
if attention_mask is not None: | |
new_attention_mask = [] | |
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): | |
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) | |
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) | |
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) | |
new_attention_mask.append(cur_new_attention_mask) | |
attention_mask = torch.stack(new_attention_mask, dim=0) | |
assert attention_mask.shape == new_labels.shape | |
else: | |
new_input_embeds = torch.stack(new_input_embeds, dim=0) | |
if labels is not None: | |
new_labels = torch.stack(new_labels, dim=0) | |
if attention_mask is not None: | |
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) | |
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) | |
assert attention_mask.shape == new_input_embeds.shape[:2] | |
return None, attention_mask, past_key_values, new_input_embeds, new_labels | |
def initialize_vision_tokenizer(self, model_args, tokenizer): | |
if model_args.mm_use_im_patch_token: | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if model_args.mm_use_im_start_end: | |
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if num_new_tokens > 0: | |
input_embeddings = self.get_input_embeddings().weight.data | |
output_embeddings = self.get_output_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) | |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
if model_args.tune_mm_mlp_adapter: | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = True | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = False | |
if model_args.pretrain_mm_mlp_adapter: | |
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') | |
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] | |
assert num_new_tokens == 2 | |
if input_embeddings.shape == embed_tokens_weight.shape: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] | |
elif embed_tokens_weight.shape[0] == num_new_tokens: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight | |
else: | |
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") | |
elif model_args.mm_use_im_patch_token: | |
if model_args.tune_mm_mlp_adapter: | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = False | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = False | |
def initialize_MM_tokenizer(self, model_args, tokenizer): | |
if model_args.mm_use_im_patch_token: | |
for modal in ['IMAGE', 'VIDEO', 'AUDIO']: | |
tokenizer.add_tokens([DEFAULT_MMODAL_PATCH_TOKEN[modal.upper()]], special_tokens=True) | |
# tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if model_args.mm_use_im_start_end: | |
num_new_tokens = 0 | |
for modal in ['IMAGE', 'VIDEO', 'AUDIO']: | |
num_new_tokens += tokenizer.add_tokens([DEFAULT_MMODAL_START_TOKEN[modal.upper()], DEFAULT_MMODAL_END_TOKEN[modal.upper()]], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if num_new_tokens > 0: | |
input_embeddings = self.get_input_embeddings().weight.data | |
output_embeddings = self.get_output_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
if model_args.tune_mm_mlp_adapter: | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = True | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = False | |
if model_args.pretrain_mm_mlp_adapter: | |
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') | |
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] | |
assert num_new_tokens == 6 # start/end tokens for image/video/audio | |
if input_embeddings.shape == embed_tokens_weight.shape: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] | |
elif embed_tokens_weight.shape[0] == num_new_tokens: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight | |
else: | |
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") | |
elif model_args.mm_use_im_patch_token: | |
if model_args.tune_mm_mlp_adapter: | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = False | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = False | |