cocktailpeanut commited on
Commit
3f5ca38
1 Parent(s): a89c9f7
Files changed (2) hide show
  1. app.py +25 -15
  2. requirements.txt +3 -2
app.py CHANGED
@@ -33,7 +33,7 @@ from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInst
33
  from controlnet_aux import ZoeDetector
34
 
35
  from compel import Compel, ReturnedEmbeddingsType
36
- import spaces
37
 
38
  #from gradio_imageslider import ImageSlider
39
 
@@ -61,7 +61,17 @@ with open("defaults_data.json", "r") as file:
61
  lora_defaults = json.load(file)
62
 
63
 
64
- device = "cuda"
 
 
 
 
 
 
 
 
 
 
65
 
66
  state_dicts = {}
67
 
@@ -84,32 +94,32 @@ sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True]
84
  hf_hub_download(
85
  repo_id="InstantX/InstantID",
86
  filename="ControlNetModel/config.json",
87
- local_dir="/data/checkpoints",
88
  )
89
  hf_hub_download(
90
  repo_id="InstantX/InstantID",
91
  filename="ControlNetModel/diffusion_pytorch_model.safetensors",
92
- local_dir="/data/checkpoints",
93
  )
94
  hf_hub_download(
95
- repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="/data/checkpoints"
96
  )
97
  hf_hub_download(
98
  repo_id="latent-consistency/lcm-lora-sdxl",
99
  filename="pytorch_lora_weights.safetensors",
100
- local_dir="/data/checkpoints",
101
  )
102
- # download antelopev2
103
- if not os.path.exists("/data/antelopev2.zip"):
104
- gdown.download(url="https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing", output="/data/", quiet=False, fuzzy=True)
105
- os.system("unzip /data/antelopev2.zip -d /data/models/")
106
 
107
  app = FaceAnalysis(name='antelopev2', root='/data', providers=['CPUExecutionProvider'])
108
  app.prepare(ctx_id=0, det_size=(640, 640))
109
 
110
  # prepare models under ./checkpoints
111
- face_adapter = f'/data/checkpoints/ip-adapter.bin'
112
- controlnet_path = f'/data/checkpoints/ControlNetModel'
113
 
114
  # load IdentityNet
115
  st = time.time()
@@ -226,7 +236,7 @@ def merge_incompatible_lora(full_path_lora, lora_scale):
226
  )
227
  del weights_sd
228
  del lora_model
229
- @spaces.GPU
230
  def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale, sdxl_loras, selected_state_index, st):
231
  print(loaded_state_dict)
232
  et = time.time()
@@ -487,7 +497,7 @@ def remove_custom_lora():
487
  with gr.Blocks(css="custom.css") as demo:
488
  gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
489
  title = gr.HTML(
490
- """<h1><img src="https://i.imgur.com/DVoGw04.png">
491
  <span>Face to All<br><small style="
492
  font-size: 13px;
493
  display: block;
@@ -597,4 +607,4 @@ with gr.Blocks(css="custom.css") as demo:
597
  share_button.click(None, [], [], js=share_js)
598
  demo.load(fn=classify_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], queue=False, js=js)
599
  demo.queue(max_size=20)
600
- demo.launch(share=True)
 
33
  from controlnet_aux import ZoeDetector
34
 
35
  from compel import Compel, ReturnedEmbeddingsType
36
+ #import spaces
37
 
38
  #from gradio_imageslider import ImageSlider
39
 
 
61
  lora_defaults = json.load(file)
62
 
63
 
64
+ #device = "cuda"
65
+ if torch.cuda.is_available():
66
+ device = "cuda"
67
+ dtype = torch.float16
68
+ elif torch.backends.mps.is_available():
69
+ device = "mps"
70
+ dtype = torch.float32
71
+ else:
72
+ device = "cpu"
73
+ dtype = torch.float32
74
+
75
 
76
  state_dicts = {}
77
 
 
94
  hf_hub_download(
95
  repo_id="InstantX/InstantID",
96
  filename="ControlNetModel/config.json",
97
+ local_dir="data/checkpoints",
98
  )
99
  hf_hub_download(
100
  repo_id="InstantX/InstantID",
101
  filename="ControlNetModel/diffusion_pytorch_model.safetensors",
102
+ local_dir="data/checkpoints",
103
  )
104
  hf_hub_download(
105
+ repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="data/checkpoints"
106
  )
107
  hf_hub_download(
108
  repo_id="latent-consistency/lcm-lora-sdxl",
109
  filename="pytorch_lora_weights.safetensors",
110
+ local_dir="data/checkpoints",
111
  )
112
+ ## download antelopev2
113
+ #if not os.path.exists("data/antelopev2.zip"):
114
+ # gdown.download(url="https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing", output="data/", quiet=False, fuzzy=True)
115
+ # os.system("unzip /data/antelopev2.zip -d /data/models/")
116
 
117
  app = FaceAnalysis(name='antelopev2', root='/data', providers=['CPUExecutionProvider'])
118
  app.prepare(ctx_id=0, det_size=(640, 640))
119
 
120
  # prepare models under ./checkpoints
121
+ face_adapter = f'data/checkpoints/ip-adapter.bin'
122
+ controlnet_path = f'data/checkpoints/ControlNetModel'
123
 
124
  # load IdentityNet
125
  st = time.time()
 
236
  )
237
  del weights_sd
238
  del lora_model
239
+ #@spaces.GPU
240
  def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale, sdxl_loras, selected_state_index, st):
241
  print(loaded_state_dict)
242
  et = time.time()
 
497
  with gr.Blocks(css="custom.css") as demo:
498
  gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
499
  title = gr.HTML(
500
+ """<h1>
501
  <span>Face to All<br><small style="
502
  font-size: 13px;
503
  display: block;
 
607
  share_button.click(None, [], [], js=share_js)
608
  demo.load(fn=classify_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], queue=False, js=js)
609
  demo.queue(max_size=20)
610
+ demo.launch(share=True)
requirements.txt CHANGED
@@ -6,7 +6,8 @@ insightface
6
  controlnet_aux
7
  timm==0.6.7
8
  gdown
9
- onnxruntime-gpu
10
  peft
11
  compel
12
- gradio_imageslider
 
 
6
  controlnet_aux
7
  timm==0.6.7
8
  gdown
9
+ #onnxruntime-gpu
10
  peft
11
  compel
12
+ gradio_imageslider
13
+ gradio