Spaces:
Runtime error
Runtime error
File size: 20,371 Bytes
82d5f8b 75e9ff1 89518a7 8a9db1e 81e0a1c 315fa0c 82d5f8b 28c720a 82d5f8b 0a3525d 12b4214 0a3525d 6921279 0a3525d abfe079 dea01c6 abfe079 0a3525d 12b4214 0a3525d 69e8a46 0a3525d 28c720a 469209d 0a3525d cc26db1 0a3525d 69e8a46 0a3525d 9bfe4ad 28c720a 0a3525d 12b4214 0a3525d 12b4214 0a3525d 12b4214 0a3525d b54e761 0a3525d 69e8a46 b54e761 69e8a46 0a3525d 69e8a46 0a3525d 12b4214 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 12b4214 69e8a46 75e9ff1 69e8a46 d879c3f 75e9ff1 69e8a46 d879c3f 69e8a46 d879c3f 69e8a46 315fa0c 69e8a46 315fa0c 69e8a46 4bb1f5a 69e8a46 75e9ff1 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 b7fff67 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 574a682 0a3525d 69e8a46 537a375 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d c1800f5 0a3525d c1800f5 0a3525d c1800f5 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 c1800f5 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 662d788 0a3525d 28c720a 0a3525d 69e8a46 0a3525d 28c720a 0a3525d 69e8a46 0a3525d 574a682 12b4214 69e8a46 0a3525d 12b4214 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 537a375 69e8a46 0a3525d 69e8a46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
import os
import queue
from huggingface_hub import snapshot_download
import hydra
import numpy as np
import wave
import io
import pyrootutils
import gc
# Download if not exists
os.makedirs("checkpoints", exist_ok=True)
snapshot_download(repo_id="fishaudio/fish-speech-1.4", local_dir="./checkpoints/fish-speech-1.4")
print("All checkpoints downloaded")
import html
import os
import threading
from argparse import ArgumentParser
from pathlib import Path
from functools import partial
import gradio as gr
import librosa
import torch
import torchaudio
torchaudio.set_audio_backend("soundfile")
from loguru import logger
from transformers import AutoTokenizer
from tools.llama.generate import launch_thread_safe_queue
from tools.vqgan.inference import load_model as load_vqgan_model
from fish_speech.text.chn_text_norm.text import Text as ChnNormedText
from tools.api import decode_vq_tokens, encode_reference
from tools.auto_rerank import batch_asr, calculate_wer, is_chinese, load_model
from tools.llama.generate import (
GenerateRequest,
GenerateResponse,
WrappedGenerateResponse,
launch_thread_safe_queue,
)
from tools.vqgan.inference import load_model as load_decoder_model
# Make einx happy
os.environ["EINX_FILTER_TRACEBACK"] = "false"
HEADER_MD = """# Fish Speech
## The demo in this space is version 1.4, Please check [Fish Audio](https://fish.audio) for the best model.
## 该 Demo 为 Fish Speech 1.4 版本, 请在 [Fish Audio](https://fish.audio) 体验最新 DEMO.
A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).
由 [Fish Audio](https://fish.audio) 研发的基于 VQ-GAN 和 Llama 的多语种语音合成.
You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1.4).
你可以在 [这里](https://github.com/fishaudio/fish-speech) 找到源代码和 [这里](https://huggingface.co/fishaudio/fish-speech-1.4) 找到模型.
Related code and weights are released under CC BY-NC-SA 4.0 License.
相关代码,权重使用 CC BY-NC-SA 4.0 许可证发布.
We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.
我们不对模型的任何滥用负责,请在使用之前考虑您当地的法律法规.
The model running in this WebUI is Fish Speech V1.4 Medium.
在此 WebUI 中运行的模型是 Fish Speech V1.4 Medium.
"""
TEXTBOX_PLACEHOLDER = """Put your text here. 在此处输入文本."""
try:
import spaces
GPU_DECORATOR = spaces.GPU
except ImportError:
def GPU_DECORATOR(func):
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
def build_html_error_message(error):
return f"""
<div style="color: red;
font-weight: bold;">
{html.escape(error)}
</div>
"""
@GPU_DECORATOR
@torch.inference_mode()
def inference(
text,
enable_reference_audio,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_p,
repetition_penalty,
temperature,
streaming=False
):
if args.max_gradio_length > 0 and len(text) > args.max_gradio_length:
return (
None,
None,
"Text is too long, please keep it under {} characters.".format(
args.max_gradio_length
),
)
# Parse reference audio aka prompt
prompt_tokens = encode_reference(
decoder_model=decoder_model,
reference_audio=reference_audio,
enable_reference_audio=enable_reference_audio,
)
# LLAMA Inference
request = dict(
device=decoder_model.device,
max_new_tokens=max_new_tokens,
text=text,
top_p=top_p,
repetition_penalty=repetition_penalty,
temperature=temperature,
compile=args.compile,
iterative_prompt=chunk_length > 0,
chunk_length=chunk_length,
max_length=2048,
prompt_tokens=prompt_tokens if enable_reference_audio else None,
prompt_text=reference_text if enable_reference_audio else None,
)
response_queue = queue.Queue()
llama_queue.put(
GenerateRequest(
request=request,
response_queue=response_queue,
)
)
segments = []
while True:
result: WrappedGenerateResponse = response_queue.get()
if result.status == "error":
return None, None, build_html_error_message(result.response)
result: GenerateResponse = result.response
if result.action == "next":
break
with torch.autocast(
device_type=(
"cpu"
if decoder_model.device.type == "mps"
else decoder_model.device.type
),
dtype=args.precision,
):
fake_audios = decode_vq_tokens(
decoder_model=decoder_model,
codes=result.codes,
)
fake_audios = fake_audios.float().cpu().numpy()
segments.append(fake_audios)
if len(segments) == 0:
return (
None,
None,
build_html_error_message(
"No audio generated, please check the input text."
),
)
# Return the final audio
audio = np.concatenate(segments, axis=0)
return None, (decoder_model.spec_transform.sample_rate, audio), None
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
def inference_with_auto_rerank(
text,
enable_reference_audio,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_p,
repetition_penalty,
temperature,
use_auto_rerank,
streaming=False,
):
max_attempts = 2 if use_auto_rerank else 1
best_wer = float("inf")
best_audio = None
best_sample_rate = None
for attempt in range(max_attempts):
_, (sample_rate, audio), message = inference(
text,
enable_reference_audio,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_p,
repetition_penalty,
temperature,
streaming=False,
)
if audio is None:
return None, None, message
if not use_auto_rerank:
return None, (sample_rate, audio), None
asr_result = batch_asr(asr_model, [audio], sample_rate)[0]
wer = calculate_wer(text, asr_result["text"])
if wer <= 0.3 and not asr_result["huge_gap"]:
return None, (sample_rate, audio), None
if wer < best_wer:
best_wer = wer
best_audio = audio
best_sample_rate = sample_rate
if attempt == max_attempts - 1:
break
return None, (best_sample_rate, best_audio), None
n_audios = 4
global_audio_list = []
global_error_list = []
def inference_wrapper(
text,
enable_reference_audio,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_p,
repetition_penalty,
temperature,
batch_infer_num,
if_load_asr_model,
):
audios = []
errors = []
for _ in range(batch_infer_num):
result = inference_with_auto_rerank(
text,
enable_reference_audio,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_p,
repetition_penalty,
temperature,
if_load_asr_model,
)
_, audio_data, error_message = result
audios.append(
gr.Audio(value=audio_data if audio_data else None, visible=True),
)
errors.append(
gr.HTML(value=error_message if error_message else None, visible=True),
)
for _ in range(batch_infer_num, n_audios):
audios.append(
gr.Audio(value=None, visible=False),
)
errors.append(
gr.HTML(value=None, visible=False),
)
return None, *audios, *errors
def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1):
buffer = io.BytesIO()
with wave.open(buffer, "wb") as wav_file:
wav_file.setnchannels(channels)
wav_file.setsampwidth(bit_depth // 8)
wav_file.setframerate(sample_rate)
wav_header_bytes = buffer.getvalue()
buffer.close()
return wav_header_bytes
def normalize_text(user_input, use_normalization):
if use_normalization:
return ChnNormedText(raw_text=user_input).normalize()
else:
return user_input
asr_model = None
def change_if_load_asr_model(if_load):
global asr_model
if if_load:
gr.Warning("Loading faster whisper model...")
if asr_model is None:
asr_model = load_model()
return gr.Checkbox(label="Unload faster whisper model", value=if_load)
if if_load is False:
gr.Warning("Unloading faster whisper model...")
del asr_model
asr_model = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
return gr.Checkbox(label="Load faster whisper model", value=if_load)
def change_if_auto_label(if_load, if_auto_label, enable_ref, ref_audio, ref_text):
if if_load and asr_model is not None:
if (
if_auto_label
and enable_ref
and ref_audio is not None
and ref_text.strip() == ""
):
data, sample_rate = librosa.load(ref_audio)
res = batch_asr(asr_model, [data], sample_rate)[0]
ref_text = res["text"]
else:
gr.Warning("Whisper model not loaded!")
return gr.Textbox(value=ref_text)
def build_app():
with gr.Blocks(theme=gr.themes.Base()) as app:
gr.Markdown(HEADER_MD)
# Use light theme by default
app.load(
None,
None,
js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', '%s');window.location.search = params.toString();}}"
% args.theme,
)
# Inference
with gr.Row():
with gr.Column(scale=3):
text = gr.Textbox(
label="Input Text", placeholder=TEXTBOX_PLACEHOLDER, lines=10
)
refined_text = gr.Textbox(
label="Realtime Transform Text",
placeholder=
"Normalization Result Preview (Currently Only Chinese)",
lines=5,
interactive=False,
)
with gr.Row():
if_refine_text = gr.Checkbox(
label="Text Normalization (ZH)",
value=False,
scale=1,
)
if_load_asr_model = gr.Checkbox(
label="Load / Unload ASR model for auto-reranking",
value=False,
scale=3,
)
with gr.Row():
with gr.Tab(label="Advanced Config"):
chunk_length = gr.Slider(
label="Iterative Prompt Length, 0 means off",
minimum=0,
maximum=500,
value=200,
step=8,
)
max_new_tokens = gr.Slider(
label="Maximum tokens per batch, 0 means no limit",
minimum=0,
maximum=2048,
value=0, # 0 means no limit
step=8,
)
top_p = gr.Slider(
label="Top-P",
minimum=0.6,
maximum=0.9,
value=0.7,
step=0.01,
)
repetition_penalty = gr.Slider(
label="Repetition Penalty",
minimum=1,
maximum=1.5,
value=1.2,
step=0.01,
)
temperature = gr.Slider(
label="Temperature",
minimum=0.6,
maximum=0.9,
value=0.7,
step=0.01,
)
with gr.Tab(label="Reference Audio"):
gr.Markdown(
"5 to 10 seconds of reference audio, useful for specifying speaker."
)
enable_reference_audio = gr.Checkbox(
label="Enable Reference Audio",
)
# Add dropdown for selecting example audio files
example_audio_files = [f for f in os.listdir("examples") if f.endswith(".wav")]
example_audio_dropdown = gr.Dropdown(
label="Select Example Audio",
choices=[""] + example_audio_files,
value=""
)
reference_audio = gr.Audio(
label="Reference Audio",
type="filepath",
)
with gr.Row():
if_auto_label = gr.Checkbox(
label="Auto Labeling",
min_width=100,
scale=0,
value=False,
)
reference_text = gr.Textbox(
label="Reference Text",
lines=1,
placeholder="在一无所知中,梦里的一天结束了,一个新的「轮回」便会开始。",
value="",
)
with gr.Tab(label="Batch Inference"):
batch_infer_num = gr.Slider(
label="Batch infer nums",
minimum=1,
maximum=n_audios,
step=1,
value=1,
)
with gr.Column(scale=3):
for _ in range(n_audios):
with gr.Row():
error = gr.HTML(
label="Error Message",
visible=True if _ == 0 else False,
)
global_error_list.append(error)
with gr.Row():
audio = gr.Audio(
label="Generated Audio",
type="numpy",
interactive=False,
visible=True if _ == 0 else False,
)
global_audio_list.append(audio)
with gr.Row():
stream_audio = gr.Audio(
label="Streaming Audio",
streaming=True,
autoplay=True,
interactive=False,
show_download_button=True,
)
with gr.Row():
with gr.Column(scale=3):
generate = gr.Button(
value="\U0001F3A7 " + "Generate", variant="primary"
)
generate_stream = gr.Button(
value="\U0001F3A7 " + "Streaming Generate",
variant="primary",
)
text.input(
fn=normalize_text, inputs=[text, if_refine_text], outputs=[refined_text]
)
if_load_asr_model.change(
fn=change_if_load_asr_model,
inputs=[if_load_asr_model],
outputs=[if_load_asr_model],
)
if_auto_label.change(
fn=lambda: gr.Textbox(value=""),
inputs=[],
outputs=[reference_text],
).then(
fn=change_if_auto_label,
inputs=[
if_load_asr_model,
if_auto_label,
enable_reference_audio,
reference_audio,
reference_text,
],
outputs=[reference_text],
)
def select_example_audio(audio_file):
if audio_file:
audio_path = os.path.join("examples", audio_file)
lab_file = os.path.splitext(audio_file)[0] + ".lab"
lab_path = os.path.join("examples", lab_file)
if os.path.exists(lab_path):
with open(lab_path, "r", encoding="utf-8") as f:
lab_content = f.read().strip()
else:
lab_content = ""
return audio_path, lab_content, True
return None, "", False
# Connect the dropdown to update reference audio and text
example_audio_dropdown.change(
fn=select_example_audio,
inputs=[example_audio_dropdown],
outputs=[reference_audio, reference_text, enable_reference_audio]
)
# # Submit
generate.click(
inference_wrapper,
[
refined_text,
enable_reference_audio,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_p,
repetition_penalty,
temperature,
batch_infer_num,
if_load_asr_model,
],
[stream_audio, *global_audio_list, *global_error_list],
concurrency_limit=1,
)
return app
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"--llama-checkpoint-path",
type=Path,
default="checkpoints/fish-speech-1.4",
)
parser.add_argument(
"--decoder-checkpoint-path",
type=Path,
default="checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth",
)
parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--half", action="store_true")
parser.add_argument("--compile", action="store_true",default=True)
parser.add_argument("--max-gradio-length", type=int, default=0)
parser.add_argument("--theme", type=str, default="light")
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
args.precision = torch.half if args.half else torch.bfloat16
logger.info("Loading Llama model...")
llama_queue = launch_thread_safe_queue(
checkpoint_path=args.llama_checkpoint_path,
device=args.device,
precision=args.precision,
compile=args.compile,
)
logger.info("Llama model loaded, loading VQ-GAN model...")
decoder_model = load_decoder_model(
config_name=args.decoder_config_name,
checkpoint_path=args.decoder_checkpoint_path,
device=args.device,
)
logger.info("Decoder model loaded, warming up...")
# Dry run to check if the model is loaded correctly and avoid the first-time latency
list(
inference(
text="Hello, world!",
enable_reference_audio=False,
reference_audio=None,
reference_text="",
max_new_tokens=0,
chunk_length=200,
top_p=0.7,
repetition_penalty=1.2,
temperature=0.7,
)
)
logger.info("Warming up done, launching the web UI...")
app = build_app()
app.launch(show_api=True)
|