fish-speech-1 / tools /webui.py
PoTaTo721's picture
Update to V1.4
28c720a
raw
history blame
18.9 kB
import gc
import html
import io
import os
import queue
import wave
from argparse import ArgumentParser
from functools import partial
from pathlib import Path
import gradio as gr
import librosa
import numpy as np
import pyrootutils
import torch
from loguru import logger
from transformers import AutoTokenizer
pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
from fish_speech.i18n import i18n
from fish_speech.text.chn_text_norm.text import Text as ChnNormedText
from fish_speech.utils import autocast_exclude_mps
from tools.api import decode_vq_tokens, encode_reference
from tools.auto_rerank import batch_asr, calculate_wer, is_chinese, load_model
from tools.llama.generate import (
GenerateRequest,
GenerateResponse,
WrappedGenerateResponse,
launch_thread_safe_queue,
)
from tools.vqgan.inference import load_model as load_decoder_model
# Make einx happy
os.environ["EINX_FILTER_TRACEBACK"] = "false"
HEADER_MD = f"""# Fish Speech
{i18n("A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).")}
{i18n("You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1.4).")}
{i18n("Related code and weights are released under CC BY-NC-SA 4.0 License.")}
{i18n("We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.")}
"""
TEXTBOX_PLACEHOLDER = i18n("Put your text here.")
SPACE_IMPORTED = False
def build_html_error_message(error):
return f"""
<div style="color: red;
font-weight: bold;">
{html.escape(str(error))}
</div>
"""
@torch.inference_mode()
def inference(
text,
enable_reference_audio,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_p,
repetition_penalty,
temperature,
streaming=False,
):
if args.max_gradio_length > 0 and len(text) > args.max_gradio_length:
return (
None,
None,
i18n("Text is too long, please keep it under {} characters.").format(
args.max_gradio_length
),
)
# Parse reference audio aka prompt
prompt_tokens = encode_reference(
decoder_model=decoder_model,
reference_audio=reference_audio,
enable_reference_audio=enable_reference_audio,
)
# LLAMA Inference
request = dict(
device=decoder_model.device,
max_new_tokens=max_new_tokens,
text=text,
top_p=top_p,
repetition_penalty=repetition_penalty,
temperature=temperature,
compile=args.compile,
iterative_prompt=chunk_length > 0,
chunk_length=chunk_length,
max_length=2048,
prompt_tokens=prompt_tokens if enable_reference_audio else None,
prompt_text=reference_text if enable_reference_audio else None,
)
response_queue = queue.Queue()
llama_queue.put(
GenerateRequest(
request=request,
response_queue=response_queue,
)
)
if streaming:
yield wav_chunk_header(), None, None
segments = []
while True:
result: WrappedGenerateResponse = response_queue.get()
if result.status == "error":
yield None, None, build_html_error_message(result.response)
break
result: GenerateResponse = result.response
if result.action == "next":
break
with autocast_exclude_mps(
device_type=decoder_model.device.type, dtype=args.precision
):
fake_audios = decode_vq_tokens(
decoder_model=decoder_model,
codes=result.codes,
)
fake_audios = fake_audios.float().cpu().numpy()
segments.append(fake_audios)
if streaming:
yield (fake_audios * 32768).astype(np.int16).tobytes(), None, None
if len(segments) == 0:
return (
None,
None,
build_html_error_message(
i18n("No audio generated, please check the input text.")
),
)
# No matter streaming or not, we need to return the final audio
audio = np.concatenate(segments, axis=0)
yield None, (decoder_model.spec_transform.sample_rate, audio), None
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
def inference_with_auto_rerank(
text,
enable_reference_audio,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_p,
repetition_penalty,
temperature,
use_auto_rerank,
streaming=False,
):
max_attempts = 2 if use_auto_rerank else 1
best_wer = float("inf")
best_audio = None
best_sample_rate = None
for attempt in range(max_attempts):
audio_generator = inference(
text,
enable_reference_audio,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_p,
repetition_penalty,
temperature,
streaming=False,
)
# 获取音频数据
for _ in audio_generator:
pass
_, (sample_rate, audio), message = _
if audio is None:
return None, None, message
if not use_auto_rerank:
return None, (sample_rate, audio), None
asr_result = batch_asr(asr_model, [audio], sample_rate)[0]
wer = calculate_wer(text, asr_result["text"])
if wer <= 0.3 and not asr_result["huge_gap"]:
return None, (sample_rate, audio), None
if wer < best_wer:
best_wer = wer
best_audio = audio
best_sample_rate = sample_rate
if attempt == max_attempts - 1:
break
return None, (best_sample_rate, best_audio), None
inference_stream = partial(inference, streaming=True)
n_audios = 4
global_audio_list = []
global_error_list = []
def inference_wrapper(
text,
enable_reference_audio,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_p,
repetition_penalty,
temperature,
batch_infer_num,
if_load_asr_model,
):
audios = []
errors = []
for _ in range(batch_infer_num):
result = inference_with_auto_rerank(
text,
enable_reference_audio,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_p,
repetition_penalty,
temperature,
if_load_asr_model,
)
_, audio_data, error_message = result
audios.append(
gr.Audio(value=audio_data if audio_data else None, visible=True),
)
errors.append(
gr.HTML(value=error_message if error_message else None, visible=True),
)
for _ in range(batch_infer_num, n_audios):
audios.append(
gr.Audio(value=None, visible=False),
)
errors.append(
gr.HTML(value=None, visible=False),
)
return None, *audios, *errors
def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1):
buffer = io.BytesIO()
with wave.open(buffer, "wb") as wav_file:
wav_file.setnchannels(channels)
wav_file.setsampwidth(bit_depth // 8)
wav_file.setframerate(sample_rate)
wav_header_bytes = buffer.getvalue()
buffer.close()
return wav_header_bytes
def normalize_text(user_input, use_normalization):
if use_normalization:
return ChnNormedText(raw_text=user_input).normalize()
else:
return user_input
asr_model = None
def change_if_load_asr_model(if_load):
global asr_model
if if_load:
gr.Warning("Loading faster whisper model...")
if asr_model is None:
asr_model = load_model()
return gr.Checkbox(label="Unload faster whisper model", value=if_load)
if if_load is False:
gr.Warning("Unloading faster whisper model...")
del asr_model
asr_model = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
return gr.Checkbox(label="Load faster whisper model", value=if_load)
def change_if_auto_label(if_load, if_auto_label, enable_ref, ref_audio, ref_text):
if if_load and asr_model is not None:
if (
if_auto_label
and enable_ref
and ref_audio is not None
and ref_text.strip() == ""
):
data, sample_rate = librosa.load(ref_audio)
res = batch_asr(asr_model, [data], sample_rate)[0]
ref_text = res["text"]
else:
gr.Warning("Whisper model not loaded!")
return gr.Textbox(value=ref_text)
def build_app():
with gr.Blocks(theme=gr.themes.Base()) as app:
gr.Markdown(HEADER_MD)
# Use light theme by default
app.load(
None,
None,
js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', '%s');window.location.search = params.toString();}}"
% args.theme,
)
# Inference
with gr.Row():
with gr.Column(scale=3):
text = gr.Textbox(
label=i18n("Input Text"), placeholder=TEXTBOX_PLACEHOLDER, lines=10
)
refined_text = gr.Textbox(
label=i18n("Realtime Transform Text"),
placeholder=i18n(
"Normalization Result Preview (Currently Only Chinese)"
),
lines=5,
interactive=False,
)
with gr.Row():
if_refine_text = gr.Checkbox(
label=i18n("Text Normalization"),
value=False,
scale=1,
)
if_load_asr_model = gr.Checkbox(
label=i18n("Load / Unload ASR model for auto-reranking"),
value=False,
scale=3,
)
with gr.Row():
with gr.Tab(label=i18n("Advanced Config")):
chunk_length = gr.Slider(
label=i18n("Iterative Prompt Length, 0 means off"),
minimum=50,
maximum=300,
value=200,
step=8,
)
max_new_tokens = gr.Slider(
label=i18n("Maximum tokens per batch, 0 means no limit"),
minimum=0,
maximum=2048,
value=1024, # 0 means no limit
step=8,
)
top_p = gr.Slider(
label="Top-P",
minimum=0.6,
maximum=0.9,
value=0.7,
step=0.01,
)
repetition_penalty = gr.Slider(
label=i18n("Repetition Penalty"),
minimum=1,
maximum=1.5,
value=1.2,
step=0.01,
)
temperature = gr.Slider(
label="Temperature",
minimum=0.6,
maximum=0.9,
value=0.7,
step=0.01,
)
with gr.Tab(label=i18n("Reference Audio")):
gr.Markdown(
i18n(
"5 to 10 seconds of reference audio, useful for specifying speaker."
)
)
enable_reference_audio = gr.Checkbox(
label=i18n("Enable Reference Audio"),
)
reference_audio = gr.Audio(
label=i18n("Reference Audio"),
type="filepath",
)
with gr.Row():
if_auto_label = gr.Checkbox(
label=i18n("Auto Labeling"),
min_width=100,
scale=0,
value=False,
)
reference_text = gr.Textbox(
label=i18n("Reference Text"),
lines=1,
placeholder="在一无所知中,梦里的一天结束了,一个新的「轮回」便会开始。",
value="",
)
with gr.Tab(label=i18n("Batch Inference")):
batch_infer_num = gr.Slider(
label="Batch infer nums",
minimum=1,
maximum=n_audios,
step=1,
value=1,
)
with gr.Column(scale=3):
for _ in range(n_audios):
with gr.Row():
error = gr.HTML(
label=i18n("Error Message"),
visible=True if _ == 0 else False,
)
global_error_list.append(error)
with gr.Row():
audio = gr.Audio(
label=i18n("Generated Audio"),
type="numpy",
interactive=False,
visible=True if _ == 0 else False,
)
global_audio_list.append(audio)
with gr.Row():
stream_audio = gr.Audio(
label=i18n("Streaming Audio"),
streaming=True,
autoplay=True,
interactive=False,
show_download_button=True,
)
with gr.Row():
with gr.Column(scale=3):
generate = gr.Button(
value="\U0001F3A7 " + i18n("Generate"), variant="primary"
)
generate_stream = gr.Button(
value="\U0001F3A7 " + i18n("Streaming Generate"),
variant="primary",
)
text.input(
fn=normalize_text, inputs=[text, if_refine_text], outputs=[refined_text]
)
if_load_asr_model.change(
fn=change_if_load_asr_model,
inputs=[if_load_asr_model],
outputs=[if_load_asr_model],
)
if_auto_label.change(
fn=lambda: gr.Textbox(value=""),
inputs=[],
outputs=[reference_text],
).then(
fn=change_if_auto_label,
inputs=[
if_load_asr_model,
if_auto_label,
enable_reference_audio,
reference_audio,
reference_text,
],
outputs=[reference_text],
)
# # Submit
generate.click(
inference_wrapper,
[
refined_text,
enable_reference_audio,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_p,
repetition_penalty,
temperature,
batch_infer_num,
if_load_asr_model,
],
[stream_audio, *global_audio_list, *global_error_list],
concurrency_limit=1,
)
generate_stream.click(
inference_stream,
[
refined_text,
enable_reference_audio,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_p,
repetition_penalty,
temperature,
],
[stream_audio, global_audio_list[0], global_error_list[0]],
concurrency_limit=10,
)
return app
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"--llama-checkpoint-path",
type=Path,
default="checkpoints/fish-speech-1.4",
)
parser.add_argument(
"--decoder-checkpoint-path",
type=Path,
default="checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth",
)
parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--half", action="store_true")
parser.add_argument("--compile", action="store_true")
parser.add_argument("--max-gradio-length", type=int, default=0)
parser.add_argument("--theme", type=str, default="light")
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
args.precision = torch.half if args.half else torch.bfloat16
logger.info("Loading Llama model...")
llama_queue = launch_thread_safe_queue(
checkpoint_path=args.llama_checkpoint_path,
device=args.device,
precision=args.precision,
compile=args.compile,
)
logger.info("Llama model loaded, loading VQ-GAN model...")
decoder_model = load_decoder_model(
config_name=args.decoder_config_name,
checkpoint_path=args.decoder_checkpoint_path,
device=args.device,
)
logger.info("Decoder model loaded, warming up...")
# Dry run to check if the model is loaded correctly and avoid the first-time latency
list(
inference(
text="Hello, world!",
enable_reference_audio=False,
reference_audio=None,
reference_text="",
max_new_tokens=0,
chunk_length=100,
top_p=0.7,
repetition_penalty=1.2,
temperature=0.7,
)
)
logger.info("Warming up done, launching the web UI...")
app = build_app()
app.launch(show_api=True)