File size: 5,778 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright (c) 2024 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from typing import Union

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch.nn.utils import weight_norm

from models.codec.amphion_codec.quantize.factorized_vector_quantize import (
    FactorizedVectorQuantize,
)
from models.codec.amphion_codec.quantize.vector_quantize import VectorQuantize
from models.codec.amphion_codec.quantize.lookup_free_quantize import LookupFreeQuantize


class ResidualVQ(nn.Module):
    """
    Introduced in SoundStream: An end2end neural audio codec
    https://arxiv.org/abs/2107.03312
    """

    def __init__(
        self,
        input_dim: int = 256,
        num_quantizers: int = 8,
        codebook_size: int = 1024,
        codebook_dim: int = 256,
        quantizer_type: str = "vq",  # "vq" or "fvq" or "lfq"
        quantizer_dropout: float = 0.5,
        **kwargs,
    ):
        super().__init__()

        self.input_dim = input_dim
        self.num_quantizers = num_quantizers
        self.codebook_size = codebook_size
        self.codebook_dim = codebook_dim
        self.quantizer_type = quantizer_type
        self.quantizer_dropout = quantizer_dropout

        if quantizer_type == "vq":
            VQ = VectorQuantize
        elif quantizer_type == "fvq":
            VQ = FactorizedVectorQuantize
        elif quantizer_type == "lfq":
            VQ = LookupFreeQuantize
        else:
            raise ValueError(f"Unknown quantizer type {quantizer_type}")

        self.quantizers = nn.ModuleList(
            [
                VQ(
                    input_dim=input_dim,
                    codebook_size=codebook_size,
                    codebook_dim=codebook_dim,
                    **kwargs,
                )
                for _ in range(num_quantizers)
            ]
        )

    def forward(self, z, n_quantizers: int = None):
        """
        Parameters
        ----------
        z : Tensor[B x D x T]
        n_quantizers : int, optional
            No. of quantizers to use
            (n_quantizers < self.n_codebooks ex: for quantizer dropout)
            Note: if `self.quantizer_dropout` is True, this argument is ignored
                when in training mode, and a random number of quantizers is used.
        Returns
        -------
        "quantized_out" : Tensor[B x D x T]
            Quantized continuous representation of input
        "all_indices" : Tensor[N x B x T]
            Codebook indices for each codebook
            (quantized discrete representation of input)
        "all_commit_losses" : Tensor[N]
        "all_codebook_losses" : Tensor[N]
        "all_quantized" : Tensor[N x B x D x T]
        """

        quantized_out = 0.0
        residual = z

        all_commit_losses = []
        all_codebook_losses = []
        all_indices = []
        all_quantized = []

        if n_quantizers is None:
            n_quantizers = self.num_quantizers

        if self.training:
            n_quantizers = torch.ones((z.shape[0],)) * self.num_quantizers + 1
            dropout = torch.randint(1, self.num_quantizers + 1, (z.shape[0],))
            n_dropout = int(z.shape[0] * self.quantizer_dropout)
            n_quantizers[:n_dropout] = dropout[:n_dropout]
            n_quantizers = n_quantizers.to(z.device)

        for i, quantizer in enumerate(self.quantizers):
            if self.training is False and i >= n_quantizers:
                break

            z_q_i, commit_loss_i, codebook_loss_i, indices_i, z_e_i = quantizer(
                residual
            )

            # Create mask to apply quantizer dropout
            mask = (
                torch.full((z.shape[0],), fill_value=i, device=z.device) < n_quantizers
            )
            quantized_out = quantized_out + z_q_i * mask[:, None, None]
            residual = residual - z_q_i

            commit_loss_i = (commit_loss_i * mask).mean()
            codebook_loss_i = (codebook_loss_i * mask).mean()

            all_commit_losses.append(commit_loss_i)
            all_codebook_losses.append(codebook_loss_i)
            all_indices.append(indices_i)
            all_quantized.append(z_q_i)

        all_commit_losses, all_codebook_losses, all_indices, all_quantized = map(
            torch.stack,
            (all_commit_losses, all_codebook_losses, all_indices, all_quantized),
        )

        return (
            quantized_out,
            all_indices,
            all_commit_losses,
            all_codebook_losses,
            all_quantized,
        )

    def vq2emb(self, vq, n_quantizers=None):
        quantized_out = 0.0
        if n_quantizers is None:
            n_quantizers = self.num_quantizers
        for idx, quantizer in enumerate(self.quantizers):
            if idx >= n_quantizers:
                break
            quantized_out += quantizer.vq2emb(vq[idx])
        return quantized_out

    def latent2dist(self, z, n_quantizers=None):
        quantized_out = 0.0
        residual = z

        all_dists = []
        all_indices = []

        if n_quantizers is None:
            n_quantizers = self.num_quantizers

        for i, quantizer in enumerate(self.quantizers):
            if self.training is False and i >= n_quantizers:
                break
            dist_i, indices_i, z_q_i = quantizer.latent2dist(residual)
            all_dists.append(dist_i)
            all_indices.append(indices_i)

            quantized_out = quantized_out + z_q_i
            residual = residual - z_q_i

        all_dists = torch.stack(all_dists)
        all_indices = torch.stack(all_indices)

        return all_dists, all_indices