Spaces:
Running
Running
File size: 32,865 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import json
import os
import random
import shutil
import time
from abc import abstractmethod
from pathlib import Path
import math
import accelerate
import json5
import numpy as np
import torch
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration
from torch.utils.data import ConcatDataset, DataLoader
from tqdm import tqdm
from models.base.base_sampler import build_samplers
from optimizer.optimizers import NoamLR
class MainProcessLogger:
def __init__(self, is_main_process=True, name=None, **kwargs):
import logging
if name is None:
logger = logging.getLogger(__name__)
else:
logger = logging.getLogger(name)
self.logger = logger
self.is_main_process = is_main_process
def info(self, msg):
if self.is_main_process:
print(msg)
# self.logger.info(msg)
def debug(self, msg):
if self.is_main_process:
print(msg)
# self.logger.debug(msg)
def warning(self, msg):
if self.is_main_process:
print(msg)
# self.logger.warning(msg)
class BaseTrainer(object):
r"""The base trainer for all tasks. Any trainer should inherit from this class."""
def __init__(self, args=None, cfg=None):
super().__init__()
self.args = args
self.cfg = cfg
cfg.exp_name = args.exp_name
# init with accelerate
self._init_accelerator()
self.accelerator.wait_for_everyone()
# Use accelerate logger for distributed training
with self.accelerator.main_process_first():
self.logger = MainProcessLogger(
self.accelerator.is_main_process,
name=args.exp_name,
log_level=args.log_level,
)
# Log some info
self.logger.info("=" * 56)
self.logger.info("||\t\t" + "New training process started." + "\t\t||")
self.logger.info("=" * 56)
self.logger.info("\n")
self.logger.debug(f"Using {args.log_level.upper()} logging level.")
self.logger.info(f"Experiment name: {args.exp_name}")
self.logger.info(f"Experiment directory: {self.exp_dir}")
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
if self.accelerator.is_main_process:
os.makedirs(self.checkpoint_dir, exist_ok=True)
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")
# init counts
self.batch_count: int = 0
self.step: int = 0
self.epoch: int = 0
self.max_epoch = (
self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf")
)
self.logger.info(
"Max epoch: {}".format(
self.max_epoch if self.max_epoch < float("inf") else "Unlimited"
)
)
# Check values
if self.accelerator.is_main_process:
self.__check_basic_configs()
# Set runtime configs
self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride
self.checkpoints_path = [
[] for _ in range(len(self.save_checkpoint_stride))
]
self.keep_last = [
i if i > 0 else float("inf") for i in self.cfg.train.keep_last
]
self.run_eval = self.cfg.train.run_eval
# set random seed
with self.accelerator.main_process_first():
start = time.monotonic_ns()
self._set_random_seed(args.seed)
end = time.monotonic_ns()
self.logger.debug(
f"Setting random seed done in {(end - start) / 1e6:.2f}ms"
)
self.logger.debug(f"Random seed: {args.seed}")
# setup data_loader
with self.accelerator.main_process_first():
self.logger.info("Building dataset...")
start = time.monotonic_ns()
self.train_dataloader, self.valid_dataloader = self._build_dataloader()
end = time.monotonic_ns()
self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms")
# setup model
with self.accelerator.main_process_first():
self.logger.info("Building model...")
start = time.monotonic_ns()
self.model = self._build_model()
end = time.monotonic_ns()
self.logger.debug(self.model)
self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms")
self.logger.info(
f"Model parameters: {self.__count_parameters(self.model)/1e6:.2f}M"
)
# optimizer & scheduler
with self.accelerator.main_process_first():
self.logger.info("Building optimizer and scheduler...")
start = time.monotonic_ns()
self.optimizer = self._build_optimizer()
self.scheduler = self._build_scheduler()
end = time.monotonic_ns()
self.logger.info(
f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms"
)
# accelerate prepare
self.logger.info("Initializing accelerate...")
start = time.monotonic_ns()
self._accelerator_prepare()
end = time.monotonic_ns()
self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms")
# create criterion
with self.accelerator.main_process_first():
self.logger.info("Building criterion...")
start = time.monotonic_ns()
self.criterion = self._build_criterion()
end = time.monotonic_ns()
self.logger.info(f"Building criterion done in {(end - start) / 1e6:.2f}ms")
# Resume or Finetune
with self.accelerator.main_process_first():
if args.resume:
if args.resume_from_ckpt_path == "":
## Automatically resume according to the current exprimental name
self.logger.info(
"Automatically resuming from latest checkpoint in {}...".format(
self.checkpoint_dir
)
)
start = time.monotonic_ns()
ckpt_path = self._load_model(
checkpoint_dir=self.checkpoint_dir, resume_type=args.resume_type
)
end = time.monotonic_ns()
self.logger.info(
f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms"
)
else:
## Resume from the given checkpoint path
if not os.path.exists(args.resume_from_ckpt_path):
raise ValueError(
"[Error] The resumed checkpoint path {} don't exist.".format(
args.resume_from_ckpt_path
)
)
self.logger.info(
"Resuming from {}...".format(args.resume_from_ckpt_path)
)
start = time.monotonic_ns()
ckpt_path = self._load_model(
checkpoint_path=args.resume_from_ckpt_path,
resume_type=args.resume_type,
)
end = time.monotonic_ns()
self.logger.info(
f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms"
)
# save config file path
self.config_save_path = os.path.join(self.exp_dir, "args.json")
def _accelerator_prepare(self):
(
self.train_dataloader,
self.valid_dataloader,
self.model,
self.optimizer,
self.scheduler,
) = self.accelerator.prepare(
self.train_dataloader,
self.valid_dataloader,
self.model,
self.optimizer,
self.scheduler,
)
### Following are abstract methods that should be implemented in child classes ###
@abstractmethod
def _build_dataset(self):
r"""Build dataset for model training/validating/evaluating."""
pass
@staticmethod
@abstractmethod
def _build_criterion():
r"""Build criterion function for model loss calculation."""
pass
@abstractmethod
def _build_model(self):
r"""Build model for training/validating/evaluating."""
pass
@abstractmethod
def _forward_step(self, batch):
r"""One forward step of the neural network. This abstract method is trying to
unify ``_train_step`` and ``_valid_step`` and avoid redundant implementation.
However, for special case that using different forward step pattern for
training and validating, you could just override this method with ``pass`` and
implement ``_train_step`` and ``_valid_step`` separately.
"""
pass
def save_checkpoint(self):
if self.accelerator.is_main_process:
keep_last = self.keep_last[0]
# 读取self.checkpoint_dir所有的folder
all_ckpts = os.listdir(self.checkpoint_dir)
all_ckpts = filter(lambda x: x.startswith("epoch"), all_ckpts)
all_ckpts = list(all_ckpts)
if len(all_ckpts) > keep_last:
# 只保留keep_last个的folder in self.checkpoint_dir, sort by step "epoch-{:04d}_step-{:07d}_loss-{:.6f}"
all_ckpts = sorted(
all_ckpts, key=lambda x: int(x.split("_")[1].split("-")[1])
)
for ckpt in all_ckpts[:-keep_last]:
shutil.rmtree(os.path.join(self.checkpoint_dir, ckpt))
checkpoint_filename = "epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
self.epoch, self.step, self.current_loss
)
path = os.path.join(self.checkpoint_dir, checkpoint_filename)
self.logger.info("Saving state to {}...".format(path))
self.accelerator.save_state(path)
self.logger.info("Finished saving state.")
@abstractmethod
def _save_auxiliary_states(self):
r"""To save some auxiliary states when saving model's ckpt"""
pass
def echo_log(self, losses, mode="Training"):
message = [
"{} - Epoch {} Step {}: [{:.3f} s/step]".format(
mode, self.epoch + 1, self.step, self.time_window.average
)
]
for key in sorted(losses.keys()):
if isinstance(losses[key], dict):
for k, v in losses[key].items():
message.append(
str(k).split("/")[-1] + "=" + str(round(float(v), 5))
)
else:
message.append(
str(key).split("/")[-1] + "=" + str(round(float(losses[key]), 5))
)
self.logger.info(", ".join(message))
### Abstract methods end ###
### THIS IS MAIN ENTRY ###
def train_loop(self):
r"""Training loop. The public entry of training process."""
# Wait everyone to prepare before we move on
self.accelerator.wait_for_everyone()
# dump config file
if self.accelerator.is_main_process:
self.__dump_cfg(self.config_save_path)
self.model.train()
self.optimizer.zero_grad()
while self.epoch < self.max_epoch:
self.logger.info("\n")
self.logger.info("-" * 32)
self.logger.info("Epoch {}: ".format(self.epoch))
### TODO: change the return values of _train_epoch() to a loss dict, or (total_loss, loss_dict)
### It's inconvenient for the model with multiple losses
# Do training & validating epoch
train_loss = self._train_epoch()
self.logger.info(" |- Train/Loss: {:.6f}".format(train_loss))
valid_loss = self._valid_epoch()
self.logger.info(" |- Valid/Loss: {:.6f}".format(valid_loss))
self.accelerator.log(
{"Epoch/Train Loss": train_loss, "Epoch/Valid Loss": valid_loss},
step=self.epoch,
)
self.accelerator.wait_for_everyone()
# Update info for each epoch
self.epoch += 1
# Finish training and save final checkpoint
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process:
self.accelerator.save_state(
os.path.join(
self.checkpoint_dir,
"final_epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
self.epoch, self.step, valid_loss
),
)
)
self._save_auxiliary_states()
self.accelerator.end_training()
def get_lr(self, it):
# 1) linear warmup for warmup_iters steps
if it < self.cfg.train.scheduler.warmup_steps:
return self.cfg.train.adamw.lr * it / self.cfg.train.scheduler.warmup_steps
# 2) if it > lr_decay_iters, return min learning rate
if it > self.cfg.train.scheduler.total_steps:
return self.cfg.train.scheduler.min_lr
# 3) in between, use cosine decay down to min learning rate
decay_ratio = (it - self.cfg.train.scheduler.warmup_steps) / (
self.cfg.train.scheduler.total_steps - self.cfg.train.scheduler.warmup_steps
)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
return self.cfg.train.scheduler.min_lr + coeff * (
self.cfg.train.adamw.lr - self.cfg.train.scheduler.min_lr
)
### Following are methods that can be used directly in child classes ###
def _train_epoch(self):
r"""Training epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
self.model.train()
epoch_sum_loss: float = 0.0
ema_loss = None
# profiler
start_this_step_time = time.time()
finish_last_step_time = time.time()
for batch in tqdm(
self.train_dataloader,
desc=f"Training Epoch {self.epoch}",
unit="batch",
colour="GREEN",
leave=False,
dynamic_ncols=True,
smoothing=0.04,
disable=not self.accelerator.is_main_process,
):
assert batch is not None
# start_this_step_time = time.time()
# print(f'load batch took: {start_this_step_time - finish_last_step_time:.6f}s')
# update learning rate
lr = self.get_lr(self.step)
for param_group in self.optimizer.param_groups:
param_group["lr"] = lr
# Do training step and BP
with self.accelerator.accumulate(self.model):
loss = self._train_step(batch)
self.current_loss = loss.item()
ema_loss = (
0.99 * ema_loss + 0.01 * self.current_loss
if ema_loss is not None
else self.current_loss
)
self.accelerator.backward(loss)
if self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(self.model.parameters(), 1.0)
self.optimizer.step()
self.optimizer.zero_grad()
self.batch_count += 1
# if self.accelerator.is_main_process:
# print(self.current_loss)
if self.accelerator.sync_gradients:
if self.step % self.cfg.train.save_checkpoint_stride[0] == 0:
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process:
try:
self.save_checkpoint()
except:
self.logger.info("Failed to save checkpoint, resuming...")
if self.accelerator.is_main_process:
if self.step % 100 == 0:
self.logger.info(f"EMA Loss: {ema_loss:.6f}")
self.accelerator.log(
{
"Step/Train Loss": loss,
"Step/Learning Rate": self.optimizer.param_groups[0]["lr"],
},
step=self.step,
)
epoch_sum_loss += loss
self.step += 1
# finish_last_step_time = time.time()
# print(f'load took: {finish_last_step_time - start_this_step_time:.6f}s')
return (
epoch_sum_loss
/ len(self.train_dataloader)
* self.cfg.train.gradient_accumulation_step
)
@torch.inference_mode()
def _valid_epoch(self):
r"""Testing epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
self.model.eval()
epoch_sum_loss = 0.0
for batch in tqdm(
self.valid_dataloader,
desc=f"Validating Epoch {self.epoch}",
unit="batch",
colour="GREEN",
leave=False,
dynamic_ncols=True,
smoothing=0.04,
disable=not self.accelerator.is_main_process,
):
batch_loss = self._valid_step(batch)
epoch_sum_loss += batch_loss.item()
return epoch_sum_loss / len(self.valid_dataloader)
def _train_step(self, batch):
r"""Training forward step. Should return average loss of a sample over
one batch. Provoke ``_forward_step`` is recommended except for special case.
See ``_train_epoch`` for usage.
"""
return self._forward_step(batch)
@torch.inference_mode()
def _valid_step(self, batch):
r"""Testing forward step. Should return average loss of a sample over
one batch. Provoke ``_forward_step`` is recommended except for special case.
See ``_test_epoch`` for usage.
"""
return self._forward_step(batch)
def _load_model(
self,
checkpoint_dir: str = None,
checkpoint_path: str = None,
resume_type: str = "",
):
r"""Load model from checkpoint. If checkpoint_path is None, it will
load the latest checkpoint in checkpoint_dir. If checkpoint_path is not
None, it will load the checkpoint specified by checkpoint_path. **Only use this
method after** ``accelerator.prepare()``.
"""
if checkpoint_path is None:
try:
all_ckpts = os.listdir(checkpoint_dir)
all_ckpts = filter(lambda x: x.startswith("epoch"), all_ckpts)
ls = list(all_ckpts)
ls = [os.path.join(checkpoint_dir, i) for i in ls]
ls.sort(
key=lambda x: int(x.split("_")[-2].split("-")[-1]), reverse=True
)
checkpoint_path = ls[0]
self.logger.info("Resume from {}".format(checkpoint_path))
except Exception as e:
print(
"Failed to load checkpoint from {}, starting FROM SCRATCH...".format(
checkpoint_dir
)
)
return None
if resume_type in ["resume", ""]:
# Load all the things, including model weights, optimizer, scheduler, and random states.
self.accelerator.load_state(input_dir=checkpoint_path)
# set epoch and step
self.epoch = int(checkpoint_path.split("_")[-3].split("-")[-1]) + 1
self.step = int(checkpoint_path.split("_")[-2].split("-")[-1]) + 1
elif resume_type == "finetune":
# Load only the model weights
accelerate.load_checkpoint_and_dispatch(
self.accelerator.unwrap_model(self.model),
os.path.join(checkpoint_path, "pytorch_model.bin"),
)
self.logger.info("Load model weights for finetune...")
else:
raise ValueError("Resume_type must be `resume` or `finetune`.")
return checkpoint_path
# TODO: LEGACY CODE
def _build_dataloader(self):
Dataset, Collator = self._build_dataset()
# build dataset instance for each dataset and combine them by ConcatDataset
datasets_list = []
for dataset in self.cfg.dataset:
subdataset = Dataset(self.cfg, dataset, is_valid=False)
datasets_list.append(subdataset)
train_dataset = ConcatDataset(datasets_list)
train_collate = Collator(self.cfg)
_, batch_sampler = build_samplers(train_dataset, self.cfg, self.logger, "train")
self.logger.debug(f"train batch_sampler: {list(batch_sampler)}")
self.logger.debug(f"length: {train_dataset.cumulative_sizes}")
# TODO: use config instead of (sampler, shuffle, drop_last, batch_size)
train_loader = DataLoader(
train_dataset,
collate_fn=train_collate,
batch_sampler=batch_sampler,
num_workers=self.cfg.train.dataloader.num_worker,
pin_memory=self.cfg.train.dataloader.pin_memory,
)
# Build valid dataloader
datasets_list = []
for dataset in self.cfg.dataset:
subdataset = Dataset(self.cfg, dataset, is_valid=True)
datasets_list.append(subdataset)
valid_dataset = ConcatDataset(datasets_list)
valid_collate = Collator(self.cfg)
_, batch_sampler = build_samplers(valid_dataset, self.cfg, self.logger, "valid")
self.logger.debug(f"valid batch_sampler: {list(batch_sampler)}")
self.logger.debug(f"length: {valid_dataset.cumulative_sizes}")
valid_loader = DataLoader(
valid_dataset,
collate_fn=valid_collate,
batch_sampler=batch_sampler,
num_workers=self.cfg.train.dataloader.num_worker,
pin_memory=self.cfg.train.dataloader.pin_memory,
)
return train_loader, valid_loader
@staticmethod
def _set_random_seed(seed):
r"""Set random seed for all possible random modules."""
random.seed(seed)
np.random.seed(seed)
torch.random.manual_seed(seed)
def _check_nan(self, loss, y_pred, y_gt):
if torch.any(torch.isnan(loss)):
self.logger.fatal("Fatal Error: Training is down since loss has Nan!")
self.logger.error("loss = {:.6f}".format(loss.item()), in_order=True)
if torch.any(torch.isnan(y_pred)):
self.logger.error(
f"y_pred has Nan: {torch.any(torch.isnan(y_pred))}", in_order=True
)
else:
self.logger.debug(
f"y_pred has Nan: {torch.any(torch.isnan(y_pred))}", in_order=True
)
if torch.any(torch.isnan(y_gt)):
self.logger.error(
f"y_gt has Nan: {torch.any(torch.isnan(y_gt))}", in_order=True
)
else:
self.logger.debug(
f"y_gt has nan: {torch.any(torch.isnan(y_gt))}", in_order=True
)
if torch.any(torch.isnan(y_pred)):
self.logger.error(f"y_pred: {y_pred}", in_order=True)
else:
self.logger.debug(f"y_pred: {y_pred}", in_order=True)
if torch.any(torch.isnan(y_gt)):
self.logger.error(f"y_gt: {y_gt}", in_order=True)
else:
self.logger.debug(f"y_gt: {y_gt}", in_order=True)
# TODO: still OK to save tracking?
self.accelerator.end_training()
raise RuntimeError("Loss has Nan! See log for more info.")
### Protected methods end ###
## Following are private methods ##
## !!! These are inconvenient for GAN-based model training. It'd be better to move these to svc_trainer.py if needed.
def _build_optimizer(self):
r"""Build optimizer for model."""
# Make case-insensitive matching
if self.cfg.train.optimizer.lower() == "adadelta":
optimizer = torch.optim.Adadelta(
self.model.parameters(), **self.cfg.train.adadelta
)
self.logger.info("Using Adadelta optimizer.")
elif self.cfg.train.optimizer.lower() == "adagrad":
optimizer = torch.optim.Adagrad(
self.model.parameters(), **self.cfg.train.adagrad
)
self.logger.info("Using Adagrad optimizer.")
elif self.cfg.train.optimizer.lower() == "adam":
optimizer = torch.optim.Adam(self.model.parameters(), **self.cfg.train.adam)
self.logger.info("Using Adam optimizer.")
elif self.cfg.train.optimizer.lower() == "adamw":
optimizer = torch.optim.AdamW(
self.model.parameters(), **self.cfg.train.adamw
)
elif self.cfg.train.optimizer.lower() == "sparseadam":
optimizer = torch.optim.SparseAdam(
self.model.parameters(), **self.cfg.train.sparseadam
)
elif self.cfg.train.optimizer.lower() == "adamax":
optimizer = torch.optim.Adamax(
self.model.parameters(), **self.cfg.train.adamax
)
elif self.cfg.train.optimizer.lower() == "asgd":
optimizer = torch.optim.ASGD(self.model.parameters(), **self.cfg.train.asgd)
elif self.cfg.train.optimizer.lower() == "lbfgs":
optimizer = torch.optim.LBFGS(
self.model.parameters(), **self.cfg.train.lbfgs
)
elif self.cfg.train.optimizer.lower() == "nadam":
optimizer = torch.optim.NAdam(
self.model.parameters(), **self.cfg.train.nadam
)
elif self.cfg.train.optimizer.lower() == "radam":
optimizer = torch.optim.RAdam(
self.model.parameters(), **self.cfg.train.radam
)
elif self.cfg.train.optimizer.lower() == "rmsprop":
optimizer = torch.optim.RMSprop(
self.model.parameters(), **self.cfg.train.rmsprop
)
elif self.cfg.train.optimizer.lower() == "rprop":
optimizer = torch.optim.Rprop(
self.model.parameters(), **self.cfg.train.rprop
)
elif self.cfg.train.optimizer.lower() == "sgd":
optimizer = torch.optim.SGD(self.model.parameters(), **self.cfg.train.sgd)
else:
raise NotImplementedError(
f"Optimizer {self.cfg.train.optimizer} not supported yet!"
)
return optimizer
def _build_scheduler(self):
r"""Build scheduler for optimizer."""
# Make case-insensitive matching
if self.cfg.train.scheduler.lower() == "lambdalr":
scheduler = torch.optim.lr_scheduler.LambdaLR(
self.optimizer, **self.cfg.train.lambdalr
)
elif self.cfg.train.scheduler.lower() == "multiplicativelr":
scheduler = torch.optim.lr_scheduler.MultiplicativeLR(
self.optimizer, **self.cfg.train.multiplicativelr
)
elif self.cfg.train.scheduler.lower() == "steplr":
scheduler = torch.optim.lr_scheduler.StepLR(
self.optimizer, **self.cfg.train.steplr
)
elif self.cfg.train.scheduler.lower() == "multisteplr":
scheduler = torch.optim.lr_scheduler.MultiStepLR(
self.optimizer, **self.cfg.train.multisteplr
)
elif self.cfg.train.scheduler.lower() == "constantlr":
scheduler = torch.optim.lr_scheduler.ConstantLR(
self.optimizer, **self.cfg.train.constantlr
)
elif self.cfg.train.scheduler.lower() == "linearlr":
scheduler = torch.optim.lr_scheduler.LinearLR(
self.optimizer, **self.cfg.train.linearlr
)
elif self.cfg.train.scheduler.lower() == "exponentiallr":
scheduler = torch.optim.lr_scheduler.ExponentialLR(
self.optimizer, **self.cfg.train.exponentiallr
)
elif self.cfg.train.scheduler.lower() == "polynomiallr":
scheduler = torch.optim.lr_scheduler.PolynomialLR(
self.optimizer, **self.cfg.train.polynomiallr
)
elif self.cfg.train.scheduler.lower() == "cosineannealinglr":
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
self.optimizer, **self.cfg.train.cosineannealinglr
)
elif self.cfg.train.scheduler.lower() == "sequentiallr":
scheduler = torch.optim.lr_scheduler.SequentialLR(
self.optimizer, **self.cfg.train.sequentiallr
)
elif self.cfg.train.scheduler.lower() == "reducelronplateau":
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer, **self.cfg.train.reducelronplateau
)
elif self.cfg.train.scheduler.lower() == "cycliclr":
scheduler = torch.optim.lr_scheduler.CyclicLR(
self.optimizer, **self.cfg.train.cycliclr
)
elif self.cfg.train.scheduler.lower() == "onecyclelr":
scheduler = torch.optim.lr_scheduler.OneCycleLR(
self.optimizer, **self.cfg.train.onecyclelr
)
elif self.cfg.train.scheduler.lower() == "cosineannearingwarmrestarts":
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
self.optimizer, **self.cfg.train.cosineannearingwarmrestarts
)
elif self.cfg.train.scheduler.lower() == "noamlr":
scheduler = NoamLR(self.optimizer, **self.cfg.train.lr_scheduler)
else:
raise NotImplementedError(
f"Scheduler {self.cfg.train.scheduler} not supported yet!"
)
return scheduler
def _init_accelerator(self):
self.exp_dir = os.path.join(
os.path.abspath(self.cfg.log_dir), self.args.exp_name
)
project_config = ProjectConfiguration(
project_dir=self.exp_dir,
logging_dir=os.path.join(self.exp_dir, "log"),
)
from accelerate import DistributedDataParallelKwargs
kwargs = DistributedDataParallelKwargs(
find_unused_parameters=self.cfg.train.find_unused_parameters
)
self.accelerator = accelerate.Accelerator(
gradient_accumulation_steps=self.cfg.train.gradient_accumulation_step,
log_with=self.cfg.train.tracker,
project_config=project_config,
kwargs_handlers=[kwargs],
)
if self.accelerator.is_main_process:
os.makedirs(project_config.project_dir, exist_ok=True)
os.makedirs(project_config.logging_dir, exist_ok=True)
with self.accelerator.main_process_first():
self.accelerator.init_trackers(self.args.exp_name)
def __check_basic_configs(self):
if self.cfg.train.gradient_accumulation_step <= 0:
self.logger.fatal("Invalid gradient_accumulation_step value!")
self.logger.error(
f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive."
)
self.accelerator.end_training()
raise ValueError(
f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive."
)
# TODO: check other values
@staticmethod
def __count_parameters(model):
model_param = 0.0
if isinstance(model, dict):
for key, value in model.items():
model_param += sum(p.numel() for p in model[key].parameters())
else:
model_param = sum(p.numel() for p in model.parameters())
return model_param
def __dump_cfg(self, path):
os.makedirs(os.path.dirname(path), exist_ok=True)
json5.dump(
self.cfg,
open(path, "w"),
indent=4,
sort_keys=True,
ensure_ascii=False,
quote_keys=True,
)
@torch.inference_mode()
def test_loop(self):
pass
### Private methods end ###
|