File size: 1,075 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# This code is modified from https://github.com/descriptinc/descript-audio-codec/blob/main/dac/nn/layers.py

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch.nn.utils import weight_norm


def WNConv1d(*args, **kwargs):
    return weight_norm(nn.Conv1d(*args, **kwargs))


def WNConvTranspose1d(*args, **kwargs):
    return weight_norm(nn.ConvTranspose1d(*args, **kwargs))


# Scripting this brings model speed up 1.4x
@torch.jit.script
def snake(x, alpha):
    shape = x.shape
    x = x.reshape(shape[0], shape[1], -1)
    x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2)
    x = x.reshape(shape)
    return x


class Snake1d(nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.alpha = nn.Parameter(torch.ones(1, channels, 1))

    def forward(self, x):
        return snake(x, self.alpha)