Spaces:
Running
Running
File size: 5,700 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).
# ## Citations
# ```bibtex
# @inproceedings{yao2021wenet,
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
# booktitle={Proc. Interspeech},
# year={2021},
# address={Brno, Czech Republic },
# organization={IEEE}
# }
# @article{zhang2022wenet,
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
# journal={arXiv preprint arXiv:2203.15455},
# year={2022}
# }
#
import torch
from modules.wenet_extractor.transducer.joint import TransducerJoint
from modules.wenet_extractor.transducer.predictor import (
ConvPredictor,
EmbeddingPredictor,
RNNPredictor,
)
from modules.wenet_extractor.transducer.transducer import Transducer
from modules.wenet_extractor.transformer.asr_model import ASRModel
from modules.wenet_extractor.transformer.cmvn import GlobalCMVN
from modules.wenet_extractor.transformer.ctc import CTC
from modules.wenet_extractor.transformer.decoder import (
BiTransformerDecoder,
TransformerDecoder,
)
from modules.wenet_extractor.transformer.encoder import (
ConformerEncoder,
TransformerEncoder,
)
from modules.wenet_extractor.squeezeformer.encoder import SqueezeformerEncoder
from modules.wenet_extractor.efficient_conformer.encoder import (
EfficientConformerEncoder,
)
from modules.wenet_extractor.paraformer.paraformer import Paraformer
from modules.wenet_extractor.cif.predictor import Predictor
from modules.wenet_extractor.utils.cmvn import load_cmvn
def init_model(configs):
if configs["cmvn_file"] is not None:
mean, istd = load_cmvn(configs["cmvn_file"], configs["is_json_cmvn"])
global_cmvn = GlobalCMVN(
torch.from_numpy(mean).float(), torch.from_numpy(istd).float()
)
else:
global_cmvn = None
input_dim = configs["input_dim"]
vocab_size = configs["output_dim"]
encoder_type = configs.get("encoder", "conformer")
decoder_type = configs.get("decoder", "bitransformer")
if encoder_type == "conformer":
encoder = ConformerEncoder(
input_dim, global_cmvn=global_cmvn, **configs["encoder_conf"]
)
elif encoder_type == "squeezeformer":
encoder = SqueezeformerEncoder(
input_dim, global_cmvn=global_cmvn, **configs["encoder_conf"]
)
elif encoder_type == "efficientConformer":
encoder = EfficientConformerEncoder(
input_dim,
global_cmvn=global_cmvn,
**configs["encoder_conf"],
**(
configs["encoder_conf"]["efficient_conf"]
if "efficient_conf" in configs["encoder_conf"]
else {}
),
)
else:
encoder = TransformerEncoder(
input_dim, global_cmvn=global_cmvn, **configs["encoder_conf"]
)
if decoder_type == "transformer":
decoder = TransformerDecoder(
vocab_size, encoder.output_size(), **configs["decoder_conf"]
)
else:
assert 0.0 < configs["model_conf"]["reverse_weight"] < 1.0
assert configs["decoder_conf"]["r_num_blocks"] > 0
decoder = BiTransformerDecoder(
vocab_size, encoder.output_size(), **configs["decoder_conf"]
)
ctc = CTC(vocab_size, encoder.output_size())
# Init joint CTC/Attention or Transducer model
if "predictor" in configs:
predictor_type = configs.get("predictor", "rnn")
if predictor_type == "rnn":
predictor = RNNPredictor(vocab_size, **configs["predictor_conf"])
elif predictor_type == "embedding":
predictor = EmbeddingPredictor(vocab_size, **configs["predictor_conf"])
configs["predictor_conf"]["output_size"] = configs["predictor_conf"][
"embed_size"
]
elif predictor_type == "conv":
predictor = ConvPredictor(vocab_size, **configs["predictor_conf"])
configs["predictor_conf"]["output_size"] = configs["predictor_conf"][
"embed_size"
]
else:
raise NotImplementedError("only rnn, embedding and conv type support now")
configs["joint_conf"]["enc_output_size"] = configs["encoder_conf"][
"output_size"
]
configs["joint_conf"]["pred_output_size"] = configs["predictor_conf"][
"output_size"
]
joint = TransducerJoint(vocab_size, **configs["joint_conf"])
model = Transducer(
vocab_size=vocab_size,
blank=0,
predictor=predictor,
encoder=encoder,
attention_decoder=decoder,
joint=joint,
ctc=ctc,
**configs["model_conf"],
)
elif "paraformer" in configs:
predictor = Predictor(**configs["cif_predictor_conf"])
model = Paraformer(
vocab_size=vocab_size,
encoder=encoder,
decoder=decoder,
ctc=ctc,
predictor=predictor,
**configs["model_conf"],
)
else:
model = ASRModel(
vocab_size=vocab_size,
encoder=encoder,
decoder=decoder,
ctc=ctc,
lfmmi_dir=configs.get("lfmmi_dir", ""),
**configs["model_conf"],
)
return model
|