Spaces:
Running
Running
File size: 6,661 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from models.base.base_trainer import BaseTrainer
from models.tta.autoencoder.autoencoder_dataset import (
AutoencoderKLDataset,
AutoencoderKLCollator,
)
from models.tta.autoencoder.autoencoder import AutoencoderKL
from models.tta.autoencoder.autoencoder_loss import AutoencoderLossWithDiscriminator
from torch.optim import Adam, AdamW
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.nn import MSELoss, L1Loss
import torch.nn.functional as F
from torch.utils.data import ConcatDataset, DataLoader
class AutoencoderKLTrainer(BaseTrainer):
def __init__(self, args, cfg):
BaseTrainer.__init__(self, args, cfg)
self.cfg = cfg
self.save_config_file()
def build_dataset(self):
return AutoencoderKLDataset, AutoencoderKLCollator
def build_optimizer(self):
opt_ae = torch.optim.AdamW(self.model.parameters(), **self.cfg.train.adam)
opt_disc = torch.optim.AdamW(
self.criterion.discriminator.parameters(), **self.cfg.train.adam
)
optimizer = {"opt_ae": opt_ae, "opt_disc": opt_disc}
return optimizer
def build_data_loader(self):
Dataset, Collator = self.build_dataset()
# build dataset instance for each dataset and combine them by ConcatDataset
datasets_list = []
for dataset in self.cfg.dataset:
subdataset = Dataset(self.cfg, dataset, is_valid=False)
datasets_list.append(subdataset)
train_dataset = ConcatDataset(datasets_list)
train_collate = Collator(self.cfg)
# use batch_sampler argument instead of (sampler, shuffle, drop_last, batch_size)
train_loader = DataLoader(
train_dataset,
collate_fn=train_collate,
num_workers=self.args.num_workers,
batch_size=self.cfg.train.batch_size,
pin_memory=False,
)
if not self.cfg.train.ddp or self.args.local_rank == 0:
datasets_list = []
for dataset in self.cfg.dataset:
subdataset = Dataset(self.cfg, dataset, is_valid=True)
datasets_list.append(subdataset)
valid_dataset = ConcatDataset(datasets_list)
valid_collate = Collator(self.cfg)
valid_loader = DataLoader(
valid_dataset,
collate_fn=valid_collate,
num_workers=1,
batch_size=self.cfg.train.batch_size,
)
else:
raise NotImplementedError("DDP is not supported yet.")
# valid_loader = None
data_loader = {"train": train_loader, "valid": valid_loader}
return data_loader
# TODO: check it...
def build_scheduler(self):
return None
# return ReduceLROnPlateau(self.optimizer["opt_ae"], **self.cfg.train.lronPlateau)
def write_summary(self, losses, stats):
for key, value in losses.items():
self.sw.add_scalar(key, value, self.step)
def write_valid_summary(self, losses, stats):
for key, value in losses.items():
self.sw.add_scalar(key, value, self.step)
def build_criterion(self):
return AutoencoderLossWithDiscriminator(self.cfg.model.loss)
def get_state_dict(self):
if self.scheduler != None:
state_dict = {
"model": self.model.state_dict(),
"optimizer_ae": self.optimizer["opt_ae"].state_dict(),
"optimizer_disc": self.optimizer["opt_disc"].state_dict(),
"scheduler": self.scheduler.state_dict(),
"step": self.step,
"epoch": self.epoch,
"batch_size": self.cfg.train.batch_size,
}
else:
state_dict = {
"model": self.model.state_dict(),
"optimizer_ae": self.optimizer["opt_ae"].state_dict(),
"optimizer_disc": self.optimizer["opt_disc"].state_dict(),
"step": self.step,
"epoch": self.epoch,
"batch_size": self.cfg.train.batch_size,
}
return state_dict
def load_model(self, checkpoint):
self.step = checkpoint["step"]
self.epoch = checkpoint["epoch"]
self.model.load_state_dict(checkpoint["model"])
self.optimizer["opt_ae"].load_state_dict(checkpoint["optimizer_ae"])
self.optimizer["opt_disc"].load_state_dict(checkpoint["optimizer_disc"])
if self.scheduler != None:
self.scheduler.load_state_dict(checkpoint["scheduler"])
def build_model(self):
self.model = AutoencoderKL(self.cfg.model.autoencoderkl)
return self.model
# TODO: train step
def train_step(self, data):
global_step = self.step
optimizer_idx = global_step % 2
train_losses = {}
total_loss = 0
train_states = {}
inputs = data["melspec"].unsqueeze(1) # (B, 80, T) -> (B, 1, 80, T)
reconstructions, posterior = self.model(inputs)
# train_stats.update(stat)
train_losses = self.criterion(
inputs=inputs,
reconstructions=reconstructions,
posteriors=posterior,
optimizer_idx=optimizer_idx,
global_step=global_step,
last_layer=self.model.get_last_layer(),
split="train",
)
if optimizer_idx == 0:
total_loss = train_losses["loss"]
self.optimizer["opt_ae"].zero_grad()
total_loss.backward()
self.optimizer["opt_ae"].step()
else:
total_loss = train_losses["d_loss"]
self.optimizer["opt_disc"].zero_grad()
total_loss.backward()
self.optimizer["opt_disc"].step()
for item in train_losses:
train_losses[item] = train_losses[item].item()
return train_losses, train_states, total_loss.item()
# TODO: eval step
@torch.no_grad()
def eval_step(self, data, index):
valid_loss = {}
total_valid_loss = 0
valid_stats = {}
inputs = data["melspec"].unsqueeze(1) # (B, 80, T) -> (B, 1, 80, T)
reconstructions, posterior = self.model(inputs)
loss = F.l1_loss(inputs, reconstructions)
valid_loss["loss"] = loss
total_valid_loss += loss
for item in valid_loss:
valid_loss[item] = valid_loss[item].item()
return valid_loss, valid_stats, total_valid_loss.item()
|