Spaces:
Running
Running
File size: 7,512 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torchaudio
import numpy as np
import time
from .valle_ar_trainer import ValleARTrainer, make_pad_mask
class ValleNARTrainer(ValleARTrainer):
def __init__(self, args=None, cfg=None):
super().__init__(args, cfg)
print("simple NAR")
self.top1_accuracies = {
1: [],
2: [],
3: [],
4: [],
5: [],
6: [],
7: [],
}
self.top5_accuracies = {
1: [],
2: [],
3: [],
4: [],
5: [],
6: [],
7: [],
}
self.top10_accuracies = {
1: [],
2: [],
3: [],
4: [],
5: [],
6: [],
7: [],
}
def _build_model(self):
from .valle_nar import ValleNAR
return ValleNAR(**self.cfg.model)
def _train_step(self, batch):
# inference codec
"""Returns: dict('speech', 'speech_len', 'phone_ids', 'phone_lens')
speech: [B, T]
speech_len: [B]
phone_ids: [B, T]
phone_lens: [B]
"""
device = self.accelerator.device
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.to(device)
with torch.no_grad():
if self.cfg.use_speechtokenizer:
# Extract discrete codes from SpeechTokenizer
# 16k
vq_id = self.codec_encoder.encode(
batch["speech"].unsqueeze(1)
) # [B,T] -> (n_q, B, T)
# RVQ_1 = codes[:1, :, :] # Contain content info, can be considered as semantic tokens
# RVQ_supplement = codes[1:, :, :] # Contain timbre info, complete info lost by the first quantizer
# Concatenating semantic tokens (RVQ_1) and supplementary timbre tokens and then decoding
# wav = self.codec_encoder.decode(vq_id)
# torchaudio.save('a.wav', wav[0].cpu(), 16000)
# # Decoding from RVQ-i:j tokens from the ith quantizers to the jth quantizers
# wav = model.decode(codes[i: (j + 1)], st=i)
else:
# using encodec, 24k
vq_id = self.codec_encoder.encode(batch["speech"].unsqueeze(1))
vq_id = torch.cat([encoded[0] for encoded in vq_id], dim=-1).transpose(
0, 1
)
# recovered_audio = self.codec_decoder(vq_emb, vq=False)
# torchaudio.save('a.wav', recovered_audio[0], 16000)
# vq_id: [8, B, T//320]
batch["speech"] = vq_id
batch["speech_len"] = batch["speech_len"] // 320 # our codec downsamples 320x
assert batch["speech_len"].max() <= batch["speech"].shape[-1]
phone_mask = 1 - make_pad_mask(
batch["phone_lens"], max_len=batch["phone_ids"].size(1), left_pad=False
).to(torch.long)
speech_mask = 1 - make_pad_mask(
batch["speech_len"], max_len=batch["speech"].size(-1)
).to(torch.long)
np.random.seed(int(time.time()) - 5 * self.accelerator.process_index)
if hasattr(self.cfg.train, "dropout"):
dropout = self.cfg.train.dropout
else:
dropout = 0.0
out = self.model(
phone_ids=batch["phone_ids"],
phone_mask=phone_mask,
target_ids=batch["speech"],
target_mask=speech_mask,
dropout=dropout,
)
loss = out.loss
self.accelerator.log(
{f"Train/NAR L{out.target_quantization_layer} Top1 acc": out.top1_acc},
step=self.step,
)
self.accelerator.log(
{f"Train/NAR L{out.target_quantization_layer} Top5 acc": out.top5_acc},
step=self.step,
)
self.accelerator.log(
{f"Train/NAR L{out.target_quantization_layer} Top10 acc": out.top10_acc},
step=self.step,
)
# if hasattr(out, 'top1_acc'):
# idx = out.target_quantization_layer
# self.top1_accuracies[idx].append(out.top1_acc)
# self.top5_accuracies[idx].append(out.top5_acc)
# self.top10_accuracies[idx].append(out.top10_acc)
# if len(self.top1_accuracies[idx]) >= 160:
# breakpoint()
# if self.accelerator.is_main_process:
# print(loss)
return loss
def _test_step(self, batch):
# inference codec
"""Returns: dict('speech', 'speech_len', 'phone_ids', 'phone_lens')
speech: [B, T]
speech_len: [B]
phone_ids: [B, T]
phone_lens: [B]
"""
import torchaudio
device = self.accelerator.device
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.to(device)
with torch.no_grad():
if self.cfg.use_speechtokenizer:
# Extract discrete codes from SpeechTokenizer
# 16k
vq_id = self.codec_encoder.encode(
batch["speech"].unsqueeze(1)
) # [B,1,T] -> (n_q, B, T)
# Concatenating semantic tokens (RVQ_1) and supplementary timbre tokens and then decoding
# wav = self.codec_encoder.decode(vq_id)
# torchaudio.save('a.wav', wav[0].cpu(), 16000)
else:
vq_id = self.codec_encoder.encode(batch["speech"].unsqueeze(1))
vq_id = torch.cat([encoded[0] for encoded in vq_id], dim=-1).transpose(
0, 1
)
# recovered_audio = self.codec_encoder.decode([(vq_id.transpose(0,1), None)])
# recovered_audio = self.codec_decoder(vq_emb, vq=False)
# torchaudio.save('a.wav', recovered_audio[0], 16000)
# vq_id: [8, B, T//200]
# vq_emb = self.codec_decoder.quantizer.vq2emb(vq=vq_id[:1], n_quantizers=1)
# recovered_audio = self.codec_decoder(vq_emb, vq=False)
# recovered_audio.shape: torch.Size([1, 1, 50200])
batch["speech"] = vq_id
# save gt
if self.cfg.use_speechtokenizer:
recovered_audio = self.codec_encoder.decode(vq_id)
else:
recovered_audio = self.codec_encoder.decode(
[(vq_id.transpose(0, 1), None)]
)
torchaudio.save("gt.wav", recovered_audio[0].cpu(), 16000)
self.model.eval()
out_vq_ids = self.model.sample_hf(
phone_ids=batch["phone_ids"][:1],
prompt_ids=batch["speech"][:, :1, :150],
first_stage_ids=batch["speech"][0, :1, 150:],
)
# breakpoint()
# out_vq_ids = torch.cat([batch['speech'][:, :225], out_vq_ids], dim=1)
# reconstruct form tokens
if self.cfg.use_speechtokenizer:
recovered_audio = self.codec_encoder.decode(out_vq_ids)
else:
recovered_audio = self.codec_encoder.decode(
[(out_vq_ids.transpose(0, 1)[:1], None)]
)
torchaudio.save("a.wav", recovered_audio[0].cpu(), 16000)
breakpoint()
|