File size: 15,358 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
# Copyright (c) 2024 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import random
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
from utils.data_utils import *
from models.base.base_dataset import (
    BaseOfflineCollator,
    BaseOfflineDataset,
    BaseTestDataset,
    BaseTestCollator,
)
from text import text_to_sequence


class JetsDataset(BaseOfflineDataset):
    def __init__(self, cfg, dataset, is_valid=False):
        BaseOfflineDataset.__init__(self, cfg, dataset, is_valid=is_valid)
        self.batch_size = cfg.train.batch_size
        cfg = cfg.preprocess
        # utt2duration
        self.utt2duration_path = {}
        for utt_info in self.metadata:
            dataset = utt_info["Dataset"]
            uid = utt_info["Uid"]
            utt = "{}_{}".format(dataset, uid)

            self.utt2duration_path[utt] = os.path.join(
                cfg.processed_dir,
                dataset,
                cfg.duration_dir,
                uid + ".npy",
            )
        self.utt2dur = self.read_duration()

        if cfg.use_frame_energy:
            self.frame_utt2energy, self.energy_statistic = load_energy(
                self.metadata,
                cfg.processed_dir,
                cfg.energy_dir,
                use_log_scale=cfg.use_log_scale_energy,
                utt2spk=self.preprocess.utt2spk if cfg.use_spkid else None,
                return_norm=True,
            )
        elif cfg.use_phone_energy:
            self.phone_utt2energy, self.energy_statistic = load_energy(
                self.metadata,
                cfg.processed_dir,
                cfg.phone_energy_dir,
                use_log_scale=cfg.use_log_scale_energy,
                utt2spk=self.utt2spk if cfg.use_spkid else None,
                return_norm=True,
            )

        if cfg.use_frame_pitch:
            self.frame_utt2pitch, self.pitch_statistic = load_energy(
                self.metadata,
                cfg.processed_dir,
                cfg.pitch_dir,
                use_log_scale=cfg.energy_extract_mode,
                utt2spk=self.utt2spk if cfg.use_spkid else None,
                return_norm=True,
            )

        elif cfg.use_phone_pitch:
            self.phone_utt2pitch, self.pitch_statistic = load_energy(
                self.metadata,
                cfg.processed_dir,
                cfg.phone_pitch_dir,
                use_log_scale=cfg.use_log_scale_pitch,
                utt2spk=self.utt2spk if cfg.use_spkid else None,
                return_norm=True,
            )

        # utt2lab
        self.utt2lab_path = {}
        for utt_info in self.metadata:
            dataset = utt_info["Dataset"]
            uid = utt_info["Uid"]
            utt = "{}_{}".format(dataset, uid)

            self.utt2lab_path[utt] = os.path.join(
                cfg.processed_dir,
                dataset,
                cfg.lab_dir,
                uid + ".txt",
            )

        self.speaker_map = {}
        if os.path.exists(os.path.join(cfg.processed_dir, "spk2id.json")):
            with open(
                os.path.exists(os.path.join(cfg.processed_dir, "spk2id.json"))
            ) as f:
                self.speaker_map = json.load(f)

        self.metadata = self.check_metadata()
        if cfg.use_audios:
            self.utt2audio_path = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)

                if cfg.extract_audio:
                    self.utt2audio_path[utt] = os.path.join(
                        cfg.processed_dir,
                        dataset,
                        cfg.audio_dir,
                        uid + ".wav",
                    )
                else:
                    self.utt2audio_path[utt] = utt_info["Path"]

    def __getitem__(self, index):
        single_feature = BaseOfflineDataset.__getitem__(self, index)

        utt_info = self.metadata[index]
        dataset = utt_info["Dataset"]
        uid = utt_info["Uid"]
        utt = "{}_{}".format(dataset, uid)

        duration = self.utt2dur[utt]

        # text
        f = open(self.utt2lab_path[utt], "r")
        phones = f.readlines()[0].strip()
        f.close()
        # todo: add cleaner(chenxi)
        phones_ids = np.array(text_to_sequence(phones, ["english_cleaners"]))
        text_len = len(phones_ids)

        if self.cfg.preprocess.use_frame_pitch:
            pitch = self.frame_utt2pitch[utt]
        elif self.cfg.preprocess.use_phone_pitch:
            pitch = self.phone_utt2pitch[utt]

        if self.cfg.preprocess.use_frame_energy:
            energy = self.frame_utt2energy[utt]
        elif self.cfg.preprocess.use_phone_energy:
            energy = self.phone_utt2energy[utt]

        # speaker
        if len(self.speaker_map) > 0:
            speaker_id = self.speaker_map[utt_info["Singer"]]
        else:
            speaker_id = 0

        single_feature.update(
            {
                "durations": duration,
                "texts": phones_ids,
                "spk_id": speaker_id,
                "text_len": text_len,
                "pitch": pitch,
                "energy": energy,
                "uid": uid,
            }
        )

        if self.cfg.preprocess.use_audios:
            audio, sr = torchaudio.load(self.utt2audio_path[utt])
            audio = audio.cpu().numpy().squeeze()
            single_feature["audio"] = audio
            single_feature["audio_len"] = audio.shape[0]
        return self.clip_if_too_long(single_feature)

    def read_duration(self):
        # read duration
        utt2dur = {}
        for index in range(len(self.metadata)):
            utt_info = self.metadata[index]
            dataset = utt_info["Dataset"]
            uid = utt_info["Uid"]
            utt = "{}_{}".format(dataset, uid)

            if not os.path.exists(self.utt2mel_path[utt]) or not os.path.exists(
                self.utt2duration_path[utt]
            ):
                continue

            mel = np.load(self.utt2mel_path[utt]).transpose(1, 0)
            duration = np.load(self.utt2duration_path[utt])
            assert mel.shape[0] == sum(
                duration
            ), f"{utt}: mismatch length between mel {mel.shape[0]} and sum(duration) {sum(duration)}"
            utt2dur[utt] = duration
        return utt2dur

    def __len__(self):
        return len(self.metadata)

    def random_select(self, feature_seq_len, max_seq_len, ending_ts=2812):
        """
        ending_ts: to avoid invalid whisper features for over 30s audios
            2812 = 30 * 24000 // 256
        """
        ts = max(feature_seq_len - max_seq_len, 0)
        ts = min(ts, ending_ts - max_seq_len)

        start = random.randint(0, ts)
        end = start + max_seq_len
        return start, end

    def clip_if_too_long(self, sample, max_seq_len=1000):
        """
        sample :
            {
                'spk_id': (1,),
                'target_len': int
                'mel': (seq_len, dim),
                'frame_pitch': (seq_len,)
                'frame_energy': (seq_len,)
                'content_vector_feat': (seq_len, dim)
            }
        """
        if sample["target_len"] <= max_seq_len:
            return sample

        start, end = self.random_select(sample["target_len"], max_seq_len)
        sample["target_len"] = end - start

        for k in sample.keys():
            if k not in ["spk_id", "target_len"]:
                sample[k] = sample[k][start:end]

        return sample

    def check_metadata(self):
        new_metadata = []
        for utt_info in self.metadata:
            dataset = utt_info["Dataset"]
            uid = utt_info["Uid"]
            utt = "{}_{}".format(dataset, uid)
            if not os.path.exists(self.utt2duration_path[utt]) or not os.path.exists(
                self.utt2mel_path[utt]
            ):
                continue
            else:
                new_metadata.append(utt_info)
        return new_metadata


class JetsCollator(BaseOfflineCollator):
    """Zero-pads model inputs and targets based on number of frames per step"""

    def __init__(self, cfg):
        BaseOfflineCollator.__init__(self, cfg)
        self.sort = cfg.train.sort_sample
        self.batch_size = cfg.train.batch_size
        self.drop_last = cfg.train.drop_last

    def __call__(self, batch):
        # mel: [b, T, n_mels]
        # frame_pitch, frame_energy: [1, T]
        # target_len: [1]
        # spk_id: [b, 1]
        # mask: [b, T, 1]
        packed_batch_features = dict()

        for key in batch[0].keys():
            if key == "target_len":
                packed_batch_features["target_len"] = torch.LongTensor(
                    [b["target_len"] for b in batch]
                )
                masks = [
                    torch.ones((b["target_len"], 1), dtype=torch.long) for b in batch
                ]
                packed_batch_features["mask"] = pad_sequence(
                    masks, batch_first=True, padding_value=0
                )
            elif key == "text_len":
                packed_batch_features["text_len"] = torch.LongTensor(
                    [b["text_len"] for b in batch]
                )
                masks = [
                    torch.ones((b["text_len"], 1), dtype=torch.long) for b in batch
                ]
                packed_batch_features["text_mask"] = pad_sequence(
                    masks, batch_first=True, padding_value=0
                )
            elif key == "spk_id":
                packed_batch_features["spk_id"] = torch.LongTensor(
                    [b["spk_id"] for b in batch]
                )
            elif key == "uid":
                packed_batch_features[key] = [b["uid"] for b in batch]
            elif key == "audio_len":
                packed_batch_features["audio_len"] = torch.LongTensor(
                    [b["audio_len"] for b in batch]
                )
            else:
                values = [torch.from_numpy(b[key]) for b in batch]
                packed_batch_features[key] = pad_sequence(
                    values, batch_first=True, padding_value=0
                )
        return packed_batch_features


class JetsTestDataset(BaseTestDataset):
    def __init__(self, args, cfg, infer_type=None):
        datasets = cfg.dataset
        cfg = cfg.preprocess
        is_bigdata = False

        assert len(datasets) >= 1
        if len(datasets) > 1:
            datasets.sort()
            bigdata_version = "_".join(datasets)
            processed_data_dir = os.path.join(cfg.processed_dir, bigdata_version)
            is_bigdata = True
        else:
            processed_data_dir = os.path.join(cfg.processed_dir, args.dataset)

        if args.test_list_file:
            self.metafile_path = args.test_list_file
            self.metadata = self.get_metadata()
        else:
            assert args.testing_set
            source_metafile_path = os.path.join(
                cfg.processed_dir,
                args.dataset,
                "{}.json".format(args.testing_set),
            )
            with open(source_metafile_path, "r") as f:
                self.metadata = json.load(f)

        self.cfg = cfg
        self.datasets = datasets
        self.data_root = processed_data_dir
        self.is_bigdata = is_bigdata
        self.source_dataset = args.dataset

        ######### Load source acoustic features #########
        if cfg.use_spkid:
            spk2id_path = os.path.join(self.data_root, cfg.spk2id)
            utt2sp_path = os.path.join(self.data_root, cfg.utt2spk)
            self.spk2id, self.utt2spk = get_spk_map(spk2id_path, utt2sp_path, datasets)

        # utt2lab
        self.utt2lab_path = {}
        for utt_info in self.metadata:
            dataset = utt_info["Dataset"]
            uid = utt_info["Uid"]
            utt = "{}_{}".format(dataset, uid)
            self.utt2lab_path[utt] = os.path.join(
                cfg.processed_dir,
                dataset,
                cfg.lab_dir,
                uid + ".txt",
            )

        self.speaker_map = {}
        if os.path.exists(os.path.join(cfg.processed_dir, "spk2id.json")):
            with open(
                os.path.exists(os.path.join(cfg.processed_dir, "spk2id.json"))
            ) as f:
                self.speaker_map = json.load(f)

    def __getitem__(self, index):
        single_feature = {}

        utt_info = self.metadata[index]
        dataset = utt_info["Dataset"]
        uid = utt_info["Uid"]
        utt = "{}_{}".format(dataset, uid)

        # text
        f = open(self.utt2lab_path[utt], "r")
        phones = f.readlines()[0].strip()
        f.close()

        phones_ids = np.array(text_to_sequence(phones, self.cfg.text_cleaners))
        text_len = len(phones_ids)

        # speaker
        if len(self.speaker_map) > 0:
            speaker_id = self.speaker_map[utt_info["Singer"]]
        else:
            speaker_id = 0

        single_feature.update(
            {
                "texts": phones_ids,
                "spk_id": speaker_id,
                "text_len": text_len,
            }
        )

        return single_feature

    def __len__(self):
        return len(self.metadata)

    def get_metadata(self):
        with open(self.metafile_path, "r", encoding="utf-8") as f:
            metadata = json.load(f)

        return metadata


class JetsTestCollator(BaseTestCollator):
    """Zero-pads model inputs and targets based on number of frames per step"""

    def __init__(self, cfg):
        self.cfg = cfg

    def __call__(self, batch):
        packed_batch_features = dict()

        # mel: [b, T, n_mels]
        # frame_pitch, frame_energy: [1, T]
        # target_len: [1]
        # spk_id: [b, 1]
        # mask: [b, T, 1]

        for key in batch[0].keys():
            if key == "target_len":
                packed_batch_features["target_len"] = torch.LongTensor(
                    [b["target_len"] for b in batch]
                )
                masks = [
                    torch.ones((b["target_len"], 1), dtype=torch.long) for b in batch
                ]
                packed_batch_features["mask"] = pad_sequence(
                    masks, batch_first=True, padding_value=0
                )
            elif key == "text_len":
                packed_batch_features["text_len"] = torch.LongTensor(
                    [b["text_len"] for b in batch]
                )
                masks = [
                    torch.ones((b["text_len"], 1), dtype=torch.long) for b in batch
                ]
                packed_batch_features["text_mask"] = pad_sequence(
                    masks, batch_first=True, padding_value=0
                )
            elif key == "spk_id":
                packed_batch_features["spk_id"] = torch.LongTensor(
                    [b["spk_id"] for b in batch]
                )
            else:
                values = [torch.from_numpy(b[key]) for b in batch]
                packed_batch_features[key] = pad_sequence(
                    values, batch_first=True, padding_value=0
                )

        return packed_batch_features