Spaces:
Running
Running
File size: 6,648 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import time
import numpy as np
import torch
from tqdm import tqdm
import torch.nn as nn
from collections import OrderedDict
import json
from models.tta.autoencoder.autoencoder import AutoencoderKL
from models.tta.ldm.inference_utils.vocoder import Generator
from models.tta.ldm.audioldm import AudioLDM
from transformers import T5EncoderModel, AutoTokenizer
from diffusers import PNDMScheduler
import matplotlib.pyplot as plt
from scipy.io.wavfile import write
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
class AudioLDMInference:
def __init__(self, args, cfg):
self.cfg = cfg
self.args = args
self.build_autoencoderkl()
self.build_textencoder()
self.model = self.build_model()
self.load_state_dict()
self.build_vocoder()
self.out_path = self.args.output_dir
self.out_mel_path = os.path.join(self.out_path, "mel")
self.out_wav_path = os.path.join(self.out_path, "wav")
os.makedirs(self.out_mel_path, exist_ok=True)
os.makedirs(self.out_wav_path, exist_ok=True)
def build_autoencoderkl(self):
self.autoencoderkl = AutoencoderKL(self.cfg.model.autoencoderkl)
self.autoencoder_path = self.cfg.model.autoencoder_path
checkpoint = torch.load(self.autoencoder_path, map_location="cpu")
self.autoencoderkl.load_state_dict(checkpoint["model"])
self.autoencoderkl.cuda(self.args.local_rank)
self.autoencoderkl.requires_grad_(requires_grad=False)
self.autoencoderkl.eval()
def build_textencoder(self):
self.tokenizer = AutoTokenizer.from_pretrained("t5-base", model_max_length=512)
self.text_encoder = T5EncoderModel.from_pretrained("t5-base")
self.text_encoder.cuda(self.args.local_rank)
self.text_encoder.requires_grad_(requires_grad=False)
self.text_encoder.eval()
def build_vocoder(self):
config_file = os.path.join(self.args.vocoder_config_path)
with open(config_file) as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
self.vocoder = Generator(h).to(self.args.local_rank)
checkpoint_dict = torch.load(
self.args.vocoder_path, map_location=self.args.local_rank
)
self.vocoder.load_state_dict(checkpoint_dict["generator"])
def build_model(self):
self.model = AudioLDM(self.cfg.model.audioldm)
return self.model
def load_state_dict(self):
self.checkpoint_path = self.args.checkpoint_path
checkpoint = torch.load(self.checkpoint_path, map_location="cpu")
self.model.load_state_dict(checkpoint["model"])
self.model.cuda(self.args.local_rank)
def get_text_embedding(self):
text = self.args.text
prompt = [text]
text_input = self.tokenizer(
prompt,
max_length=self.tokenizer.model_max_length,
truncation=True,
padding="do_not_pad",
return_tensors="pt",
)
text_embeddings = self.text_encoder(
text_input.input_ids.to(self.args.local_rank)
)[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = self.tokenizer(
[""] * 1, padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(self.args.local_rank)
)[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
def inference(self):
text_embeddings = self.get_text_embedding()
print(text_embeddings.shape)
num_steps = self.args.num_steps
guidance_scale = self.args.guidance_scale
noise_scheduler = PNDMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
skip_prk_steps=True,
set_alpha_to_one=False,
steps_offset=1,
prediction_type="epsilon",
)
noise_scheduler.set_timesteps(num_steps)
latents = torch.randn(
(
1,
self.cfg.model.autoencoderkl.z_channels,
80 // (2 ** (len(self.cfg.model.autoencoderkl.ch_mult) - 1)),
624 // (2 ** (len(self.cfg.model.autoencoderkl.ch_mult) - 1)),
)
).to(self.args.local_rank)
self.model.eval()
for t in tqdm(noise_scheduler.timesteps):
t = t.to(self.args.local_rank)
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
latent_model_input = noise_scheduler.scale_model_input(
latent_model_input, timestep=t
)
# print(latent_model_input.shape)
# predict the noise residual
with torch.no_grad():
noise_pred = self.model(
latent_model_input, torch.cat([t.unsqueeze(0)] * 2), text_embeddings
)
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
# print(latents.shape)
latents_out = latents
print(latents_out.shape)
with torch.no_grad():
mel_out = self.autoencoderkl.decode(latents_out)
print(mel_out.shape)
melspec = mel_out[0, 0].cpu().detach().numpy()
plt.imsave(os.path.join(self.out_mel_path, self.args.text + ".png"), melspec)
self.vocoder.eval()
self.vocoder.remove_weight_norm()
with torch.no_grad():
melspec = np.expand_dims(melspec, 0)
melspec = torch.FloatTensor(melspec).to(self.args.local_rank)
y = self.vocoder(melspec)
audio = y.squeeze()
audio = audio * 32768.0
audio = audio.cpu().numpy().astype("int16")
write(os.path.join(self.out_wav_path, self.args.text + ".wav"), 16000, audio)
|