File size: 9,753 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
from torch.nn.utils.rnn import pad_sequence
from utils.data_utils import *
from models.tts.base.tts_dataset import (
    TTSDataset,
    TTSCollator,
    TTSTestDataset,
    TTSTestCollator,
)

from torch.utils.data.sampler import (
    BatchSampler,
    RandomSampler,
    SequentialSampler,
)

from utils.tokenizer import tokenize_audio


class VALLEDataset(TTSDataset):
    def __init__(self, cfg, dataset, is_valid=False):
        super().__init__(cfg, dataset, is_valid=is_valid)

        """
        Args:
            cfg: config
            dataset: dataset name
            is_valid: whether to use train or valid dataset
        """

        assert isinstance(dataset, str)

        assert cfg.preprocess.use_acoustic_token == True
        if cfg.preprocess.use_acoustic_token:
            self.utt2acousticToken_path = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)

                self.utt2acousticToken_path[utt] = os.path.join(
                    cfg.preprocess.processed_dir,
                    dataset,
                    cfg.preprocess.acoustic_token_dir,  # code
                    uid + ".npy",
                )

        self.all_num_frames = []
        for i in range(len(self.metadata)):
            self.all_num_frames.append(self.metadata[i]["Duration"])
        self.num_frame_sorted = np.array(sorted(self.all_num_frames))
        self.num_frame_indices = np.array(
            sorted(
                range(len(self.all_num_frames)), key=lambda k: self.all_num_frames[k]
            )
        )

    def __len__(self):
        return super().__len__()

    def get_metadata(self):
        metadata_filter = []
        with open(self.metafile_path, "r", encoding="utf-8") as f:
            metadata = json.load(f)
        for utt_info in metadata:
            duration = utt_info["Duration"]
            if (
                duration >= self.cfg.preprocess.max_duration
                or duration <= self.cfg.preprocess.min_duration
            ):
                continue
            metadata_filter.append(utt_info)

        return metadata_filter

    def get_dur(self, idx):
        utt_info = self.metadata[idx]
        return utt_info["Duration"]

    def __getitem__(self, index):
        single_feature = super().__getitem__(index)

        utt_info = self.metadata[index]
        dataset = utt_info["Dataset"]
        uid = utt_info["Uid"]
        utt = "{}_{}".format(dataset, uid)

        # acoustic token
        if self.cfg.preprocess.use_acoustic_token:
            acoustic_token = np.load(self.utt2acousticToken_path[utt])
            if "target_len" not in single_feature.keys():
                single_feature["target_len"] = acoustic_token.shape[0]
            single_feature["acoustic_token"] = acoustic_token  # [T, 8]

        return single_feature

    def get_num_frames(self, index):
        utt_info = self.metadata[index]
        return int(
            utt_info["Duration"]
            * (self.cfg.preprocess.sample_rate // self.cfg.preprocess.codec_hop_size)
        )


class VALLECollator(TTSCollator):
    def __init__(self, cfg):
        super().__init__(cfg)

    def __call__(self, batch):
        parsed_batch_features = super().__call__(batch)
        return parsed_batch_features


class VALLETestDataset(TTSTestDataset):
    def __init__(self, args, cfg):
        super().__init__(args, cfg)

        # prepare data
        assert cfg.preprocess.use_acoustic_token == True
        if cfg.preprocess.use_acoustic_token:
            self.utt2acousticToken = {}
            for utt_info in self.metadata:
                dataset = utt_info["Dataset"]
                uid = utt_info["Uid"]
                utt = "{}_{}".format(dataset, uid)

                # extract acoustic token
                audio_file = utt_info["Audio_pormpt_path"]
                encoded_frames = tokenize_audio(self.audio_tokenizer, audio_file)
                audio_prompt_token = (
                    encoded_frames[0][0].transpose(2, 1).squeeze(0).cpu().numpy()
                )
                self.utt2acousticToken[utt] = audio_prompt_token

    def __getitem__(self, index):
        utt_info = self.metadata[index]

        dataset = utt_info["Dataset"]
        uid = utt_info["Uid"]
        utt = "{}_{}".format(dataset, uid)

        single_feature = dict()

        # acoustic token
        if self.cfg.preprocess.use_acoustic_token:
            acoustic_token = self.utt2acousticToken[utt]
            if "target_len" not in single_feature.keys():
                single_feature["target_len"] = acoustic_token.shape[0]
            single_feature["acoustic_token"] = acoustic_token  # [T, 8]

        # phone sequence todo
        if self.cfg.preprocess.use_phone:
            single_feature["phone_seq"] = np.array(self.utt2seq[utt])
            single_feature["phone_len"] = len(self.utt2seq[utt])
            single_feature["pmt_phone_seq"] = np.array(self.utt2pmtseq[utt])
            single_feature["pmt_phone_len"] = len(self.utt2pmtseq[utt])

        return single_feature

    def get_metadata(self):
        with open(self.metafile_path, "r", encoding="utf-8") as f:
            metadata = json.load(f)
        return metadata

    def __len__(self):
        return len(self.metadata)


class VALLETestCollator(TTSTestCollator):
    def __init__(self, cfg):
        self.cfg = cfg

    def __call__(self, batch):
        packed_batch_features = dict()

        for key in batch[0].keys():
            if key == "target_len":
                packed_batch_features["target_len"] = torch.LongTensor(
                    [b["target_len"] for b in batch]
                )
                masks = [
                    torch.ones((b["target_len"], 1), dtype=torch.long) for b in batch
                ]
                packed_batch_features["mask"] = pad_sequence(
                    masks, batch_first=True, padding_value=0
                )
            elif key == "phone_len":
                packed_batch_features["phone_len"] = torch.LongTensor(
                    [b["phone_len"] for b in batch]
                )
                masks = [
                    torch.ones((b["phone_len"], 1), dtype=torch.long) for b in batch
                ]
                packed_batch_features["phn_mask"] = pad_sequence(
                    masks, batch_first=True, padding_value=0
                )
            elif key == "pmt_phone_len":
                packed_batch_features["pmt_phone_len"] = torch.LongTensor(
                    [b["pmt_phone_len"] for b in batch]
                )
                masks = [
                    torch.ones((b["pmt_phone_len"], 1), dtype=torch.long) for b in batch
                ]
                packed_batch_features["pmt_phone_len_mask"] = pad_sequence(
                    masks, batch_first=True, padding_value=0
                )
            elif key == "audio_len":
                packed_batch_features["audio_len"] = torch.LongTensor(
                    [b["audio_len"] for b in batch]
                )
                masks = [
                    torch.ones((b["audio_len"], 1), dtype=torch.long) for b in batch
                ]
            else:
                values = [torch.from_numpy(b[key]) for b in batch]
                packed_batch_features[key] = pad_sequence(
                    values, batch_first=True, padding_value=0
                )

        return packed_batch_features


def _is_batch_full(batch, num_tokens, max_tokens, max_sentences):
    if len(batch) == 0:
        return 0
    if len(batch) == max_sentences:
        return 1
    if num_tokens > max_tokens:
        return 1
    return 0


def batch_by_size(
    indices,
    num_tokens_fn,
    max_tokens=None,
    max_sentences=None,
    required_batch_size_multiple=1,
):
    """
    Yield mini-batches of indices bucketed by size. Batches may contain
    sequences of different lengths.

    Args:
        indices (List[int]): ordered list of dataset indices
        num_tokens_fn (callable): function that returns the number of tokens at
            a given index
        max_tokens (int, optional): max number of tokens in each batch
            (default: None).
        max_sentences (int, optional): max number of sentences in each
            batch (default: None).
        required_batch_size_multiple (int, optional): require batch size to
            be a multiple of N (default: 1).
    """
    bsz_mult = required_batch_size_multiple

    sample_len = 0
    sample_lens = []
    batch = []
    batches = []
    for i in range(len(indices)):
        idx = indices[i]
        num_tokens = num_tokens_fn(idx)
        sample_lens.append(num_tokens)
        sample_len = max(sample_len, num_tokens)

        assert (
            sample_len <= max_tokens
        ), "sentence at index {} of size {} exceeds max_tokens " "limit of {}!".format(
            idx, sample_len, max_tokens
        )
        num_tokens = (len(batch) + 1) * sample_len

        if _is_batch_full(batch, num_tokens, max_tokens, max_sentences):
            mod_len = max(
                bsz_mult * (len(batch) // bsz_mult),
                len(batch) % bsz_mult,
            )
            batches.append(batch[:mod_len])
            batch = batch[mod_len:]
            sample_lens = sample_lens[mod_len:]
            sample_len = max(sample_lens) if len(sample_lens) > 0 else 0
        batch.append(idx)
    if len(batch) > 0:
        batches.append(batch)
    return batches