Spaces:
Running
Running
File size: 19,258 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import torch
import json
import json5
import time
import accelerate
import random
import numpy as np
import shutil
from pathlib import Path
from tqdm import tqdm
from glob import glob
from accelerate.logging import get_logger
from torch.utils.data import DataLoader
from models.vocoders.vocoder_dataset import (
VocoderDataset,
VocoderCollator,
VocoderConcatDataset,
)
from models.vocoders.gan.generator import bigvgan, hifigan, melgan, nsfhifigan, apnet
from models.vocoders.flow.waveglow import waveglow
from models.vocoders.diffusion.diffwave import diffwave
from models.vocoders.autoregressive.wavenet import wavenet
from models.vocoders.autoregressive.wavernn import wavernn
from models.vocoders.gan import gan_vocoder_inference
from models.vocoders.diffusion import diffusion_vocoder_inference
from utils.io import save_audio
_vocoders = {
"diffwave": diffwave.DiffWave,
"wavernn": wavernn.WaveRNN,
"wavenet": wavenet.WaveNet,
"waveglow": waveglow.WaveGlow,
"nsfhifigan": nsfhifigan.NSFHiFiGAN,
"bigvgan": bigvgan.BigVGAN,
"hifigan": hifigan.HiFiGAN,
"melgan": melgan.MelGAN,
"apnet": apnet.APNet,
}
# Forward call for generalized Inferencor
_vocoder_forward_funcs = {
# "world": world_inference.synthesis_audios,
# "wavernn": wavernn_inference.synthesis_audios,
# "wavenet": wavenet_inference.synthesis_audios,
"diffwave": diffusion_vocoder_inference.vocoder_inference,
"nsfhifigan": gan_vocoder_inference.vocoder_inference,
"bigvgan": gan_vocoder_inference.vocoder_inference,
"melgan": gan_vocoder_inference.vocoder_inference,
"hifigan": gan_vocoder_inference.vocoder_inference,
"apnet": gan_vocoder_inference.vocoder_inference,
}
# APIs for other tasks. e.g. SVC, TTS, TTA...
_vocoder_infer_funcs = {
# "world": world_inference.synthesis_audios,
# "wavernn": wavernn_inference.synthesis_audios,
# "wavenet": wavenet_inference.synthesis_audios,
"diffwave": diffusion_vocoder_inference.synthesis_audios,
"nsfhifigan": gan_vocoder_inference.synthesis_audios,
"bigvgan": gan_vocoder_inference.synthesis_audios,
"melgan": gan_vocoder_inference.synthesis_audios,
"hifigan": gan_vocoder_inference.synthesis_audios,
"apnet": gan_vocoder_inference.synthesis_audios,
}
class VocoderInference(object):
def __init__(self, args=None, cfg=None, infer_type="from_dataset"):
super().__init__()
start = time.monotonic_ns()
self.args = args
self.cfg = cfg
self.infer_type = infer_type
# Init accelerator
self.accelerator = accelerate.Accelerator()
self.accelerator.wait_for_everyone()
# Get logger
with self.accelerator.main_process_first():
self.logger = get_logger("inference", log_level=args.log_level)
# Log some info
self.logger.info("=" * 56)
self.logger.info("||\t\t" + "New inference process started." + "\t\t||")
self.logger.info("=" * 56)
self.logger.info("\n")
self.vocoder_dir = args.vocoder_dir
self.logger.debug(f"Vocoder dir: {args.vocoder_dir}")
os.makedirs(args.output_dir, exist_ok=True)
if os.path.exists(os.path.join(args.output_dir, "pred")):
shutil.rmtree(os.path.join(args.output_dir, "pred"))
if os.path.exists(os.path.join(args.output_dir, "gt")):
shutil.rmtree(os.path.join(args.output_dir, "gt"))
os.makedirs(os.path.join(args.output_dir, "pred"), exist_ok=True)
os.makedirs(os.path.join(args.output_dir, "gt"), exist_ok=True)
# Set random seed
with self.accelerator.main_process_first():
start = time.monotonic_ns()
self._set_random_seed(self.cfg.train.random_seed)
end = time.monotonic_ns()
self.logger.debug(
f"Setting random seed done in {(end - start) / 1e6:.2f}ms"
)
self.logger.debug(f"Random seed: {self.cfg.train.random_seed}")
# Setup inference mode
if self.infer_type == "infer_from_dataset":
self.cfg.dataset = self.args.infer_datasets
elif self.infer_type == "infer_from_feature":
self._build_tmp_dataset_from_feature()
self.cfg.dataset = ["tmp"]
elif self.infer_type == "infer_from_audio":
self._build_tmp_dataset_from_audio()
self.cfg.dataset = ["tmp"]
# Setup data loader
with self.accelerator.main_process_first():
self.logger.info("Building dataset...")
start = time.monotonic_ns()
self.test_dataloader = self._build_dataloader()
end = time.monotonic_ns()
self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms")
# Build model
with self.accelerator.main_process_first():
self.logger.info("Building model...")
start = time.monotonic_ns()
self.model = self._build_model()
end = time.monotonic_ns()
self.logger.info(f"Building model done in {(end - start) / 1e6:.3f}ms")
# Init with accelerate
self.logger.info("Initializing accelerate...")
start = time.monotonic_ns()
self.accelerator = accelerate.Accelerator()
(self.model, self.test_dataloader) = self.accelerator.prepare(
self.model, self.test_dataloader
)
end = time.monotonic_ns()
self.accelerator.wait_for_everyone()
self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.3f}ms")
with self.accelerator.main_process_first():
self.logger.info("Loading checkpoint...")
start = time.monotonic_ns()
if os.path.isdir(args.vocoder_dir):
if os.path.isdir(os.path.join(args.vocoder_dir, "checkpoint")):
self._load_model(os.path.join(args.vocoder_dir, "checkpoint"))
else:
self._load_model(os.path.join(args.vocoder_dir))
else:
self._load_model(os.path.join(args.vocoder_dir))
end = time.monotonic_ns()
self.logger.info(f"Loading checkpoint done in {(end - start) / 1e6:.3f}ms")
self.model.eval()
self.accelerator.wait_for_everyone()
def _build_tmp_dataset_from_feature(self):
if os.path.exists(os.path.join(self.cfg.preprocess.processed_dir, "tmp")):
shutil.rmtree(os.path.join(self.cfg.preprocess.processed_dir, "tmp"))
utts = []
mels = glob(os.path.join(self.args.feature_folder, "mels", "*.npy"))
for i, mel in enumerate(mels):
uid = mel.split("/")[-1].split(".")[0]
utt = {"Dataset": "tmp", "Uid": uid, "index": i}
utts.append(utt)
os.makedirs(os.path.join(self.cfg.preprocess.processed_dir, "tmp"))
with open(
os.path.join(self.cfg.preprocess.processed_dir, "tmp", "test.json"), "w"
) as f:
json.dump(utts, f)
meta_info = {"dataset": "tmp", "test": {"size": len(utts)}}
with open(
os.path.join(self.cfg.preprocess.processed_dir, "tmp", "meta_info.json"),
"w",
) as f:
json.dump(meta_info, f)
features = glob(os.path.join(self.args.feature_folder, "*"))
for feature in features:
feature_name = feature.split("/")[-1]
if os.path.isfile(feature):
continue
shutil.copytree(
os.path.join(self.args.feature_folder, feature_name),
os.path.join(self.cfg.preprocess.processed_dir, "tmp", feature_name),
)
def _build_tmp_dataset_from_audio(self):
if os.path.exists(os.path.join(self.cfg.preprocess.processed_dir, "tmp")):
shutil.rmtree(os.path.join(self.cfg.preprocess.processed_dir, "tmp"))
utts = []
audios = glob(os.path.join(self.args.audio_folder, "*"))
for i, audio in enumerate(audios):
uid = audio.split("/")[-1].split(".")[0]
utt = {"Dataset": "tmp", "Uid": uid, "index": i, "Path": audio}
utts.append(utt)
os.makedirs(os.path.join(self.cfg.preprocess.processed_dir, "tmp"))
with open(
os.path.join(self.cfg.preprocess.processed_dir, "tmp", "test.json"), "w"
) as f:
json.dump(utts, f)
meta_info = {"dataset": "tmp", "test": {"size": len(utts)}}
with open(
os.path.join(self.cfg.preprocess.processed_dir, "tmp", "meta_info.json"),
"w",
) as f:
json.dump(meta_info, f)
from processors import acoustic_extractor
acoustic_extractor.extract_utt_acoustic_features_serial(
utts, os.path.join(self.cfg.preprocess.processed_dir, "tmp"), self.cfg
)
def _build_test_dataset(self):
return VocoderDataset, VocoderCollator
def _build_model(self):
model = _vocoders[self.cfg.model.generator](self.cfg)
return model
def _build_dataloader(self):
"""Build dataloader which merges a series of datasets."""
Dataset, Collator = self._build_test_dataset()
datasets_list = []
for dataset in self.cfg.dataset:
subdataset = Dataset(self.cfg, dataset, is_valid=True)
datasets_list.append(subdataset)
test_dataset = VocoderConcatDataset(datasets_list, full_audio_inference=False)
test_collate = Collator(self.cfg)
test_batch_size = min(self.cfg.inference.batch_size, len(test_dataset))
test_dataloader = DataLoader(
test_dataset,
collate_fn=test_collate,
num_workers=1,
batch_size=test_batch_size,
shuffle=False,
)
self.test_batch_size = test_batch_size
self.test_dataset = test_dataset
return test_dataloader
def _load_model(self, checkpoint_dir, from_multi_gpu=False):
"""Load model from checkpoint. If a folder is given, it will
load the latest checkpoint in checkpoint_dir. If a path is given
it will load the checkpoint specified by checkpoint_path.
**Only use this method after** ``accelerator.prepare()``.
"""
if os.path.isdir(checkpoint_dir):
if "epoch" in checkpoint_dir and "step" in checkpoint_dir:
checkpoint_path = checkpoint_dir
else:
# Load the latest accelerator state dicts
ls = [
str(i)
for i in Path(checkpoint_dir).glob("*")
if not "audio" in str(i)
]
ls.sort(
key=lambda x: int(x.split("/")[-1].split("_")[0].split("-")[-1]),
reverse=True,
)
checkpoint_path = ls[0]
accelerate.load_checkpoint_and_dispatch(
self.accelerator.unwrap_model(self.model),
os.path.join(checkpoint_path, "pytorch_model.bin"),
)
return str(checkpoint_path)
else:
# Load old .pt checkpoints
if self.cfg.model.generator in [
"bigvgan",
"hifigan",
"melgan",
"nsfhifigan",
]:
ckpt = torch.load(
checkpoint_dir,
map_location=(
torch.device("cuda")
if torch.cuda.is_available()
else torch.device("cpu")
),
)
if from_multi_gpu:
pretrained_generator_dict = ckpt["generator_state_dict"]
generator_dict = self.model.state_dict()
new_generator_dict = {
k.split("module.")[-1]: v
for k, v in pretrained_generator_dict.items()
if (
k.split("module.")[-1] in generator_dict
and v.shape == generator_dict[k.split("module.")[-1]].shape
)
}
generator_dict.update(new_generator_dict)
self.model.load_state_dict(generator_dict)
else:
self.model.load_state_dict(ckpt["generator_state_dict"])
else:
self.model.load_state_dict(torch.load(checkpoint_dir)["state_dict"])
return str(checkpoint_dir)
def inference(self):
"""Inference via batches"""
for i, batch in tqdm(enumerate(self.test_dataloader)):
if self.cfg.preprocess.use_frame_pitch:
audio_pred = _vocoder_forward_funcs[self.cfg.model.generator](
self.cfg,
self.model,
batch["mel"].transpose(-1, -2),
f0s=batch["frame_pitch"].float(),
device=next(self.model.parameters()).device,
)
else:
audio_pred = _vocoder_forward_funcs[self.cfg.model.generator](
self.cfg,
self.model,
batch["mel"].transpose(-1, -2),
device=next(self.model.parameters()).device,
)
audio_ls = audio_pred.chunk(self.test_batch_size)
audio_gt_ls = batch["audio"].cpu().chunk(self.test_batch_size)
length_ls = batch["target_len"].cpu().chunk(self.test_batch_size)
j = 0
for it, it_gt, l in zip(audio_ls, audio_gt_ls, length_ls):
l = l.item()
it = it.squeeze(0).squeeze(0)[: l * self.cfg.preprocess.hop_size]
it_gt = it_gt.squeeze(0)[: l * self.cfg.preprocess.hop_size]
uid = self.test_dataset.metadata[i * self.test_batch_size + j]["Uid"]
save_audio(
os.path.join(self.args.output_dir, "pred", "{}.wav").format(uid),
it,
self.cfg.preprocess.sample_rate,
)
save_audio(
os.path.join(self.args.output_dir, "gt", "{}.wav").format(uid),
it_gt,
self.cfg.preprocess.sample_rate,
)
j += 1
if os.path.exists(os.path.join(self.cfg.preprocess.processed_dir, "tmp")):
shutil.rmtree(os.path.join(self.cfg.preprocess.processed_dir, "tmp"))
def _set_random_seed(self, seed):
"""Set random seed for all possible random modules."""
random.seed(seed)
np.random.seed(seed)
torch.random.manual_seed(seed)
def _count_parameters(self, model):
return sum(p.numel() for p in model.parameters())
def _dump_cfg(self, path):
os.makedirs(os.path.dirname(path), exist_ok=True)
json5.dump(
self.cfg,
open(path, "w"),
indent=4,
sort_keys=True,
ensure_ascii=False,
quote_keys=True,
)
def load_nnvocoder(
cfg,
vocoder_name,
weights_file,
from_multi_gpu=False,
):
"""Load the specified vocoder.
cfg: the vocoder config filer.
weights_file: a folder or a .pt path.
from_multi_gpu: automatically remove the "module" string in state dicts if "True".
"""
print("Loading Vocoder from Weights file: {}".format(weights_file))
# Build model
model = _vocoders[vocoder_name](cfg)
if not os.path.isdir(weights_file):
# Load from .pt file
if vocoder_name in ["bigvgan", "hifigan", "melgan", "nsfhifigan"]:
ckpt = torch.load(
weights_file,
map_location=(
torch.device("cuda")
if torch.cuda.is_available()
else torch.device("cpu")
),
)
if from_multi_gpu:
pretrained_generator_dict = ckpt["generator_state_dict"]
generator_dict = model.state_dict()
new_generator_dict = {
k.split("module.")[-1]: v
for k, v in pretrained_generator_dict.items()
if (
k.split("module.")[-1] in generator_dict
and v.shape == generator_dict[k.split("module.")[-1]].shape
)
}
generator_dict.update(new_generator_dict)
model.load_state_dict(generator_dict)
else:
model.load_state_dict(ckpt["generator_state_dict"])
else:
model.load_state_dict(torch.load(weights_file)["state_dict"])
else:
# Load from accelerator state dict
weights_file = os.path.join(weights_file, "checkpoint")
ls = [str(i) for i in Path(weights_file).glob("*") if not "audio" in str(i)]
ls.sort(key=lambda x: int(x.split("_")[-3].split("-")[-1]), reverse=True)
checkpoint_path = ls[0]
accelerator = accelerate.Accelerator()
model = accelerator.prepare(model)
accelerator.load_state(checkpoint_path)
if torch.cuda.is_available():
model = model.cuda()
model = model.eval()
return model
def tensorize(data, device, n_samples):
"""
data: a list of numpy array
"""
assert type(data) == list
if n_samples:
data = data[:n_samples]
data = [torch.as_tensor(x, device=device) for x in data]
return data
def synthesis(
cfg,
vocoder_weight_file,
n_samples,
pred,
f0s=None,
batch_size=64,
fast_inference=False,
):
"""Synthesis audios from a given vocoder and series of given features.
cfg: vocoder config.
vocoder_weight_file: a folder of accelerator state dict or a path to the .pt file.
pred: a list of numpy arrays. [(seq_len1, acoustic_features_dim), (seq_len2, acoustic_features_dim), ...]
"""
vocoder_name = cfg.model.generator
print("Synthesis audios using {} vocoder...".format(vocoder_name))
###### TODO: World Vocoder Refactor ######
# if vocoder_name == "world":
# world_inference.synthesis_audios(
# cfg, dataset_name, split, n_samples, pred, save_dir, tag
# )
# return
# ====== Loading neural vocoder model ======
vocoder = load_nnvocoder(
cfg, vocoder_name, weights_file=vocoder_weight_file, from_multi_gpu=True
)
device = next(vocoder.parameters()).device
# ====== Inference for predicted acoustic features ======
# pred: (frame_len, n_mels) -> (n_mels, frame_len)
mels_pred = tensorize([p.T for p in pred], device, n_samples)
print("For predicted mels, #sample = {}...".format(len(mels_pred)))
audios_pred = _vocoder_infer_funcs[vocoder_name](
cfg,
vocoder,
mels_pred,
f0s=f0s,
batch_size=batch_size,
fast_inference=fast_inference,
)
return audios_pred
|