Spaces:
Running
Running
File size: 13,661 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import copy
import numpy as np
import math
from tqdm.auto import tqdm
from utils.ssim import SSIM
from models.svc.transformer.conformer import Conformer, BaseModule
from models.svc.diffusion.diffusion_wrapper import DiffusionWrapper
class Consistency(nn.Module):
def __init__(self, cfg, distill=False):
super().__init__()
self.cfg = cfg
self.denoise_fn = DiffusionWrapper(self.cfg)
self.cfg = cfg.model.comosvc
self.teacher = not distill
self.P_mean = self.cfg.P_mean
self.P_std = self.cfg.P_std
self.sigma_data = self.cfg.sigma_data
self.sigma_min = self.cfg.sigma_min
self.sigma_max = self.cfg.sigma_max
self.rho = self.cfg.rho
self.N = self.cfg.n_timesteps
self.ssim_loss = SSIM()
# Time step discretization
step_indices = torch.arange(self.N)
# karras boundaries formula
t_steps = (
self.sigma_min ** (1 / self.rho)
+ step_indices
/ (self.N - 1)
* (self.sigma_max ** (1 / self.rho) - self.sigma_min ** (1 / self.rho))
) ** self.rho
self.t_steps = torch.cat(
[torch.zeros_like(t_steps[:1]), self.round_sigma(t_steps)]
)
def init_consistency_training(self):
self.denoise_fn_ema = copy.deepcopy(self.denoise_fn)
self.denoise_fn_pretrained = copy.deepcopy(self.denoise_fn)
def EDMPrecond(self, x, sigma, cond, denoise_fn):
"""
karras diffusion reverse process
Args:
x: noisy mel-spectrogram [B x n_mel x L]
sigma: noise level [B x 1 x 1]
cond: output of conformer encoder [B x n_mel x L]
denoise_fn: denoiser neural network e.g. DilatedCNN
Returns:
denoised mel-spectrogram [B x n_mel x L]
"""
sigma = sigma.reshape(-1, 1, 1)
c_skip = self.sigma_data**2 / (sigma**2 + self.sigma_data**2)
c_out = (
(sigma - self.sigma_min)
* self.sigma_data
/ (sigma**2 + self.sigma_data**2).sqrt()
)
c_in = 1 / (self.sigma_data**2 + sigma**2).sqrt()
c_noise = sigma.log() / 4
x_in = c_in * x
x_in = x_in.transpose(1, 2)
x = x.transpose(1, 2)
cond = cond.transpose(1, 2)
c_noise = c_noise.squeeze()
if c_noise.dim() == 0:
c_noise = c_noise.unsqueeze(0)
F_x = denoise_fn(x_in, c_noise, cond)
D_x = c_skip * x + c_out * (F_x)
D_x = D_x.transpose(1, 2)
return D_x
def EDMLoss(self, x_start, cond, mask):
"""
compute loss for EDM model
Args:
x_start: ground truth mel-spectrogram [B x n_mel x L]
cond: output of conformer encoder [B x n_mel x L]
mask: mask of padded frames [B x n_mel x L]
"""
rnd_normal = torch.randn([x_start.shape[0], 1, 1], device=x_start.device)
sigma = (rnd_normal * self.P_std + self.P_mean).exp()
weight = (sigma**2 + self.sigma_data**2) / (sigma * self.sigma_data) ** 2
# follow Grad-TTS, start from Gaussian noise with mean cond and std I
noise = (torch.randn_like(x_start) + cond) * sigma
D_yn = self.EDMPrecond(x_start + noise, sigma, cond, self.denoise_fn)
loss = weight * ((D_yn - x_start) ** 2)
loss = torch.sum(loss * mask) / torch.sum(mask)
return loss
def round_sigma(self, sigma):
return torch.as_tensor(sigma)
def edm_sampler(
self,
latents,
cond,
nonpadding,
num_steps=50,
sigma_min=0.002,
sigma_max=80,
rho=7,
S_churn=0,
S_min=0,
S_max=float("inf"),
S_noise=1,
):
"""
karras diffusion sampler
Args:
latents: noisy mel-spectrogram [B x n_mel x L]
cond: output of conformer encoder [B x n_mel x L]
nonpadding: mask of padded frames [B x n_mel x L]
num_steps: number of steps for diffusion inference
Returns:
denoised mel-spectrogram [B x n_mel x L]
"""
# Time step discretization.
num_steps = num_steps + 1
step_indices = torch.arange(num_steps, device=latents.device)
t_steps = (
sigma_max ** (1 / rho)
+ step_indices
/ (num_steps - 1)
* (sigma_min ** (1 / rho) - sigma_max ** (1 / rho))
) ** rho
t_steps = torch.cat([self.round_sigma(t_steps), torch.zeros_like(t_steps[:1])])
# Main sampling loop.
x_next = latents * t_steps[0]
# wrap in tqdm for progress bar
bar = tqdm(enumerate(zip(t_steps[:-1], t_steps[1:])))
for i, (t_cur, t_next) in bar:
x_cur = x_next
# Increase noise temporarily.
gamma = (
min(S_churn / num_steps, np.sqrt(2) - 1)
if S_min <= t_cur <= S_max
else 0
)
t_hat = self.round_sigma(t_cur + gamma * t_cur)
t = torch.zeros((x_cur.shape[0], 1, 1), device=x_cur.device)
t[:, 0, 0] = t_hat
t_hat = t
x_hat = x_cur + (
t_hat**2 - t_cur**2
).sqrt() * S_noise * torch.randn_like(x_cur)
# Euler step.
denoised = self.EDMPrecond(x_hat, t_hat, cond, self.denoise_fn)
d_cur = (x_hat - denoised) / t_hat
x_next = x_hat + (t_next - t_hat) * d_cur
# add Heun’s 2nd order method
# if i < num_steps - 1:
# t = torch.zeros((x_cur.shape[0], 1, 1), device=x_cur.device)
# t[:, 0, 0] = t_next
# #t_next = t
# denoised = self.EDMPrecond(x_next, t, cond, self.denoise_fn, nonpadding)
# d_prime = (x_next - denoised) / t_next
# x_next = x_hat + (t_next - t_hat) * (0.5 * d_cur + 0.5 * d_prime)
return x_next
def CTLoss_D(self, y, cond, mask):
"""
compute loss for consistency distillation
Args:
y: ground truth mel-spectrogram [B x n_mel x L]
cond: output of conformer encoder [B x n_mel x L]
mask: mask of padded frames [B x n_mel x L]
"""
with torch.no_grad():
mu = 0.95
for p, ema_p in zip(
self.denoise_fn.parameters(), self.denoise_fn_ema.parameters()
):
ema_p.mul_(mu).add_(p, alpha=1 - mu)
n = torch.randint(1, self.N, (y.shape[0],))
z = torch.randn_like(y) + cond
tn_1 = self.t_steps[n + 1].reshape(-1, 1, 1).to(y.device)
f_theta = self.EDMPrecond(y + tn_1 * z, tn_1, cond, self.denoise_fn)
with torch.no_grad():
tn = self.t_steps[n].reshape(-1, 1, 1).to(y.device)
# euler step
x_hat = y + tn_1 * z
denoised = self.EDMPrecond(x_hat, tn_1, cond, self.denoise_fn_pretrained)
d_cur = (x_hat - denoised) / tn_1
y_tn = x_hat + (tn - tn_1) * d_cur
# Heun’s 2nd order method
denoised2 = self.EDMPrecond(y_tn, tn, cond, self.denoise_fn_pretrained)
d_prime = (y_tn - denoised2) / tn
y_tn = x_hat + (tn - tn_1) * (0.5 * d_cur + 0.5 * d_prime)
f_theta_ema = self.EDMPrecond(y_tn, tn, cond, self.denoise_fn_ema)
loss = (f_theta - f_theta_ema.detach()) ** 2
loss = torch.sum(loss * mask) / torch.sum(mask)
# check nan
if torch.any(torch.isnan(loss)):
print("nan loss")
if torch.any(torch.isnan(f_theta)):
print("nan f_theta")
if torch.any(torch.isnan(f_theta_ema)):
print("nan f_theta_ema")
return loss
def get_t_steps(self, N):
N = N + 1
step_indices = torch.arange(N)
t_steps = (
self.sigma_min ** (1 / self.rho)
+ step_indices
/ (N - 1)
* (self.sigma_max ** (1 / self.rho) - self.sigma_min ** (1 / self.rho))
) ** self.rho
return t_steps.flip(0)
def CT_sampler(self, latents, cond, nonpadding, t_steps=1):
"""
consistency distillation sampler
Args:
latents: noisy mel-spectrogram [B x n_mel x L]
cond: output of conformer encoder [B x n_mel x L]
nonpadding: mask of padded frames [B x n_mel x L]
t_steps: number of steps for diffusion inference
Returns:
denoised mel-spectrogram [B x n_mel x L]
"""
# one-step
if t_steps == 1:
t_steps = [80]
# multi-step
else:
t_steps = self.get_t_steps(t_steps)
t_steps = torch.as_tensor(t_steps).to(latents.device)
latents = latents * t_steps[0]
_t = torch.zeros((latents.shape[0], 1, 1), device=latents.device)
_t[:, 0, 0] = t_steps[0]
x = self.EDMPrecond(latents, _t, cond, self.denoise_fn_ema)
for t in t_steps[1:-1]:
z = torch.randn_like(x) + cond
x_tn = x + (t**2 - self.sigma_min**2).sqrt() * z
_t = torch.zeros((x.shape[0], 1, 1), device=x.device)
_t[:, 0, 0] = t
t = _t
x = self.EDMPrecond(x_tn, t, cond, self.denoise_fn_ema)
return x
def forward(self, x, nonpadding, cond, t_steps=1, infer=False):
"""
calculate loss or sample mel-spectrogram
Args:
x:
training: ground truth mel-spectrogram [B x n_mel x L]
inference: output of encoder [B x n_mel x L]
"""
if self.teacher: # teacher model -- karras diffusion
if not infer:
loss = self.EDMLoss(x, cond, nonpadding)
return loss
else:
shape = (cond.shape[0], self.cfg.n_mel, cond.shape[2])
x = torch.randn(shape, device=x.device) + cond
x = self.edm_sampler(x, cond, nonpadding, t_steps)
return x
else: # Consistency distillation
if not infer:
loss = self.CTLoss_D(x, cond, nonpadding)
return loss
else:
shape = (cond.shape[0], self.cfg.n_mel, cond.shape[2])
x = torch.randn(shape, device=x.device) + cond
x = self.CT_sampler(x, cond, nonpadding, t_steps=1)
return x
class ComoSVC(BaseModule):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
self.cfg.model.comosvc.n_mel = self.cfg.preprocess.n_mel
self.distill = self.cfg.model.comosvc.distill
self.encoder = Conformer(self.cfg.model.comosvc)
self.decoder = Consistency(self.cfg, distill=self.distill)
self.ssim_loss = SSIM()
@torch.no_grad()
def forward(self, x_mask, x, n_timesteps, temperature=1.0):
"""
Generates mel-spectrogram from pitch, content vector, energy. Returns:
1. encoder outputs (from conformer)
2. decoder outputs (from diffusion-based decoder)
Args:
x_mask : mask of padded frames in mel-spectrogram. [B x L x n_mel]
x : output of encoder framework. [B x L x d_condition]
n_timesteps : number of steps to use for reverse diffusion in decoder.
temperature : controls variance of terminal distribution.
"""
# Get encoder_outputs `mu_x`
mu_x = self.encoder(x, x_mask)
encoder_outputs = mu_x
mu_x = mu_x.transpose(1, 2)
x_mask = x_mask.transpose(1, 2)
# Generate sample by performing reverse dynamics
decoder_outputs = self.decoder(
mu_x, x_mask, mu_x, t_steps=n_timesteps, infer=True
)
decoder_outputs = decoder_outputs.transpose(1, 2)
return encoder_outputs, decoder_outputs
def compute_loss(self, x_mask, x, mel, skip_diff=False):
"""
Computes 2 losses:
1. prior loss: loss between mel-spectrogram and encoder outputs. (l2 and ssim loss)
2. diffusion loss: loss between gaussian noise and its reconstruction by diffusion-based decoder.
Args:
x_mask : mask of padded frames in mel-spectrogram. [B x L x n_mel]
x : output of encoder framework. [B x L x d_condition]
mel : ground truth mel-spectrogram. [B x L x n_mel]
"""
mu_x = self.encoder(x, x_mask)
# prior loss
x_mask = x_mask.repeat(1, 1, mel.shape[-1])
prior_loss = torch.sum(
0.5 * ((mel - mu_x) ** 2 + math.log(2 * math.pi)) * x_mask
)
prior_loss = prior_loss / (torch.sum(x_mask) * self.cfg.model.comosvc.n_mel)
# ssim loss
ssim_loss = self.ssim_loss(mu_x, mel)
ssim_loss = torch.sum(ssim_loss * x_mask) / torch.sum(x_mask)
x_mask = x_mask.transpose(1, 2)
mu_x = mu_x.transpose(1, 2)
mel = mel.transpose(1, 2)
if not self.distill and skip_diff:
diff_loss = prior_loss.clone()
diff_loss.fill_(0)
# Cut a small segment of mel-spectrogram in order to increase batch size
else:
mu_y = mu_x
mask_y = x_mask
diff_loss = self.decoder(mel, mask_y, mu_y, infer=False)
return ssim_loss, prior_loss, diff_loss
|