File size: 19,712 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import os
import sys
import time
import torch
import json
import itertools
import accelerate
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter

from torch.optim import AdamW
from torch.optim.lr_scheduler import ExponentialLR

from librosa.filters import mel as librosa_mel_fn

from accelerate.logging import get_logger
from pathlib import Path

from utils.io import save_audio
from utils.data_utils import *
from utils.util import (
    Logger,
    ValueWindow,
    remove_older_ckpt,
    set_all_random_seed,
    save_config,
)
from utils.mel import extract_mel_features
from models.vocoders.vocoder_trainer import VocoderTrainer
from models.vocoders.diffusion.diffusion_vocoder_dataset import (
    DiffusionVocoderDataset,
    DiffusionVocoderCollator,
)

from models.vocoders.diffusion.diffwave.diffwave import DiffWave

from models.vocoders.diffusion.diffusion_vocoder_inference import vocoder_inference

supported_models = {
    "diffwave": DiffWave,
}


class DiffusionVocoderTrainer(VocoderTrainer):
    def __init__(self, args, cfg):
        super().__init__()

        self.args = args
        self.cfg = cfg

        cfg.exp_name = args.exp_name

        # Diffusion
        self.cfg.model.diffwave.noise_schedule = np.linspace(
            self.cfg.model.diffwave.noise_schedule_factors[0],
            self.cfg.model.diffwave.noise_schedule_factors[1],
            self.cfg.model.diffwave.noise_schedule_factors[2],
        )
        beta = np.array(self.cfg.model.diffwave.noise_schedule)
        noise_level = np.cumprod(1 - beta)
        self.noise_level = torch.tensor(noise_level.astype(np.float32))

        # Init accelerator
        self._init_accelerator()
        self.accelerator.wait_for_everyone()

        # Init logger
        with self.accelerator.main_process_first():
            self.logger = get_logger(args.exp_name, log_level=args.log_level)

        self.logger.info("=" * 56)
        self.logger.info("||\t\t" + "New training process started." + "\t\t||")
        self.logger.info("=" * 56)
        self.logger.info("\n")
        self.logger.debug(f"Using {args.log_level.upper()} logging level.")
        self.logger.info(f"Experiment name: {args.exp_name}")
        self.logger.info(f"Experiment directory: {self.exp_dir}")
        self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
        if self.accelerator.is_main_process:
            os.makedirs(self.checkpoint_dir, exist_ok=True)
        self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")

        # Init training status
        self.batch_count: int = 0
        self.step: int = 0
        self.epoch: int = 0

        self.max_epoch = (
            self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf")
        )
        self.logger.info(
            "Max epoch: {}".format(
                self.max_epoch if self.max_epoch < float("inf") else "Unlimited"
            )
        )

        # Check potential erorrs
        if self.accelerator.is_main_process:
            self._check_basic_configs()
            self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride
            self.checkpoints_path = [
                [] for _ in range(len(self.save_checkpoint_stride))
            ]
            self.run_eval = self.cfg.train.run_eval

        # Set random seed
        with self.accelerator.main_process_first():
            start = time.monotonic_ns()
            self._set_random_seed(self.cfg.train.random_seed)
            end = time.monotonic_ns()
            self.logger.debug(
                f"Setting random seed done in {(end - start) / 1e6:.2f}ms"
            )
            self.logger.debug(f"Random seed: {self.cfg.train.random_seed}")

        # Build dataloader
        with self.accelerator.main_process_first():
            self.logger.info("Building dataset...")
            start = time.monotonic_ns()
            self.train_dataloader, self.valid_dataloader = self._build_dataloader()
            end = time.monotonic_ns()
            self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms")

        # Build model
        with self.accelerator.main_process_first():
            self.logger.info("Building model...")
            start = time.monotonic_ns()
            self.model = self._build_model()
            end = time.monotonic_ns()
            self.logger.debug(self.model)
            self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms")
            self.logger.info(f"Model parameters: {self._count_parameters()/1e6:.2f}M")

        # Build optimizers and schedulers
        with self.accelerator.main_process_first():
            self.logger.info("Building optimizer and scheduler...")
            start = time.monotonic_ns()
            self.optimizer = self._build_optimizer()
            self.scheduler = self._build_scheduler()
            end = time.monotonic_ns()
            self.logger.info(
                f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms"
            )

        # Accelerator preparing
        self.logger.info("Initializing accelerate...")
        start = time.monotonic_ns()
        (
            self.train_dataloader,
            self.valid_dataloader,
            self.model,
            self.optimizer,
            self.scheduler,
        ) = self.accelerator.prepare(
            self.train_dataloader,
            self.valid_dataloader,
            self.model,
            self.optimizer,
            self.scheduler,
        )
        end = time.monotonic_ns()
        self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms")

        # Build criterions
        with self.accelerator.main_process_first():
            self.logger.info("Building criterion...")
            start = time.monotonic_ns()
            self.criterion = self._build_criterion()
            end = time.monotonic_ns()
            self.logger.info(f"Building criterion done in {(end - start) / 1e6:.2f}ms")

        # Resume checkpoints
        with self.accelerator.main_process_first():
            if args.resume_type:
                self.logger.info("Resuming from checkpoint...")
                start = time.monotonic_ns()
                ckpt_path = Path(args.checkpoint)
                if self._is_valid_pattern(ckpt_path.parts[-1]):
                    ckpt_path = self._load_model(
                        None, args.checkpoint, args.resume_type
                    )
                else:
                    ckpt_path = self._load_model(
                        args.checkpoint, resume_type=args.resume_type
                    )
                end = time.monotonic_ns()
                self.logger.info(
                    f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms"
                )
                self.checkpoints_path = json.load(
                    open(os.path.join(ckpt_path, "ckpts.json"), "r")
                )

            self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
            if self.accelerator.is_main_process:
                os.makedirs(self.checkpoint_dir, exist_ok=True)
            self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")

        # Save config
        self.config_save_path = os.path.join(self.exp_dir, "args.json")

        # Device
        self.device = next(self.model.parameters()).device
        self.noise_level = self.noise_level.to(self.device)

    def _build_dataset(self):
        return DiffusionVocoderDataset, DiffusionVocoderCollator

    def _build_criterion(self):
        criterion = nn.L1Loss()
        return criterion

    def _build_model(self):
        model = supported_models[self.cfg.model.generator](self.cfg)
        return model

    def _build_optimizer(self):
        optimizer = AdamW(
            self.model.parameters(),
            lr=self.cfg.train.adamw.lr,
            betas=(self.cfg.train.adamw.adam_b1, self.cfg.train.adamw.adam_b2),
        )
        return optimizer

    def _build_scheduler(self):
        scheduler = ExponentialLR(
            self.optimizer,
            gamma=self.cfg.train.exponential_lr.lr_decay,
            last_epoch=self.epoch - 1,
        )
        return scheduler

    def train_loop(self):
        """Training process"""
        self.accelerator.wait_for_everyone()

        # Dump config
        if self.accelerator.is_main_process:
            self._dump_cfg(self.config_save_path)
        self.model.train()
        self.optimizer.zero_grad()

        # Sync and start training
        self.accelerator.wait_for_everyone()
        while self.epoch < self.max_epoch:
            self.logger.info("\n")
            self.logger.info("-" * 32)
            self.logger.info("Epoch {}: ".format(self.epoch))

            # Train and Validate
            train_total_loss = self._train_epoch()
            valid_total_loss = self._valid_epoch()
            self.accelerator.log(
                {
                    "Epoch/Train Total Loss": train_total_loss,
                    "Epoch/Valid Total Loss": valid_total_loss,
                },
                step=self.epoch,
            )

            # Update scheduler
            self.accelerator.wait_for_everyone()
            self.scheduler.step()

            # Check save checkpoint interval
            run_eval = False
            if self.accelerator.is_main_process:
                save_checkpoint = False
                for i, num in enumerate(self.save_checkpoint_stride):
                    if self.epoch % num == 0:
                        save_checkpoint = True
                        run_eval |= self.run_eval[i]

            # Save checkpoints
            self.accelerator.wait_for_everyone()
            if self.accelerator.is_main_process and save_checkpoint:
                path = os.path.join(
                    self.checkpoint_dir,
                    "epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
                        self.epoch, self.step, valid_total_loss
                    ),
                )
                self.accelerator.save_state(path)
                json.dump(
                    self.checkpoints_path,
                    open(os.path.join(path, "ckpts.json"), "w"),
                    ensure_ascii=False,
                    indent=4,
                )

            # Save eval audios
            self.accelerator.wait_for_everyone()
            if self.accelerator.is_main_process and run_eval:
                for i in range(len(self.valid_dataloader.dataset.eval_audios)):
                    if self.cfg.preprocess.use_frame_pitch:
                        eval_audio = self._inference(
                            self.valid_dataloader.dataset.eval_mels[i],
                            eval_pitch=self.valid_dataloader.dataset.eval_pitchs[i],
                            use_pitch=True,
                        )
                    else:
                        eval_audio = self._inference(
                            self.valid_dataloader.dataset.eval_mels[i]
                        )
                    path = os.path.join(
                        self.checkpoint_dir,
                        "epoch-{:04d}_step-{:07d}_loss-{:.6f}_eval_audio_{}.wav".format(
                            self.epoch,
                            self.step,
                            valid_total_loss,
                            self.valid_dataloader.dataset.eval_dataset_names[i],
                        ),
                    )
                    path_gt = os.path.join(
                        self.checkpoint_dir,
                        "epoch-{:04d}_step-{:07d}_loss-{:.6f}_eval_audio_{}_gt.wav".format(
                            self.epoch,
                            self.step,
                            valid_total_loss,
                            self.valid_dataloader.dataset.eval_dataset_names[i],
                        ),
                    )
                    save_audio(path, eval_audio, self.cfg.preprocess.sample_rate)
                    save_audio(
                        path_gt,
                        self.valid_dataloader.dataset.eval_audios[i],
                        self.cfg.preprocess.sample_rate,
                    )

            self.accelerator.wait_for_everyone()

            self.epoch += 1

        # Finish training
        self.accelerator.wait_for_everyone()
        path = os.path.join(
            self.checkpoint_dir,
            "epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
                self.epoch, self.step, valid_total_loss
            ),
        )
        self.accelerator.save_state(path)

    def _train_epoch(self):
        """Training epoch. Should return average loss of a batch (sample) over
        one epoch. See ``train_loop`` for usage.
        """
        self.model.train()

        epoch_total_loss: int = 0

        for batch in tqdm(
            self.train_dataloader,
            desc=f"Training Epoch {self.epoch}",
            unit="batch",
            colour="GREEN",
            leave=False,
            dynamic_ncols=True,
            smoothing=0.04,
            disable=not self.accelerator.is_main_process,
        ):
            # Get losses
            total_loss = self._train_step(batch)
            self.batch_count += 1

            # Log info
            if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
                self.accelerator.log(
                    {
                        "Step/Learning Rate": self.optimizer.param_groups[0]["lr"],
                    },
                    step=self.step,
                )
                epoch_total_loss += total_loss
                self.step += 1

        # Get and log total losses
        self.accelerator.wait_for_everyone()
        epoch_total_loss = (
            epoch_total_loss
            / len(self.train_dataloader)
            * self.cfg.train.gradient_accumulation_step
        )
        return epoch_total_loss

    def _train_step(self, data):
        """Training forward step. Should return average loss of a sample over
        one batch. Provoke ``_forward_step`` is recommended except for special case.
        See ``_train_epoch`` for usage.
        """
        # Init losses
        total_loss = 0

        # Use input feature to get predictions
        mel_input = data["mel"]
        audio_gt = data["audio"]

        if self.cfg.preprocess.use_frame_pitch:
            pitch_input = data["frame_pitch"]

        self.optimizer.zero_grad()
        N = audio_gt.shape[0]
        t = torch.randint(
            0, len(self.cfg.model.diffwave.noise_schedule), [N], device=self.device
        )
        noise_scale = self.noise_level[t].unsqueeze(1)
        noise_scale_sqrt = noise_scale**0.5
        noise = torch.randn_like(audio_gt).to(self.device)
        noisy_audio = noise_scale_sqrt * audio_gt + (1.0 - noise_scale) ** 0.5 * noise

        audio_pred = self.model(noisy_audio, t, mel_input)
        total_loss = self.criterion(noise, audio_pred.squeeze(1))

        self.accelerator.backward(total_loss)
        self.optimizer.step()

        return total_loss.item()

    def _valid_epoch(self):
        """Testing epoch. Should return average loss of a batch (sample) over
        one epoch. See ``train_loop`` for usage.
        """
        self.model.eval()

        epoch_total_loss: int = 0

        for batch in tqdm(
            self.valid_dataloader,
            desc=f"Validating Epoch {self.epoch}",
            unit="batch",
            colour="GREEN",
            leave=False,
            dynamic_ncols=True,
            smoothing=0.04,
            disable=not self.accelerator.is_main_process,
        ):
            # Get losses
            total_loss = self._valid_step(batch)

            # Log info
            epoch_total_loss += total_loss

        # Get and log total losses
        self.accelerator.wait_for_everyone()
        epoch_total_loss = epoch_total_loss / len(self.valid_dataloader)
        return epoch_total_loss

    def _valid_step(self, data):
        """Testing forward step. Should return average loss of a sample over
        one batch. Provoke ``_forward_step`` is recommended except for special case.
        See ``_test_epoch`` for usage.
        """
        # Init losses
        total_loss = 0

        # Use feature inputs to get the predicted audio
        mel_input = data["mel"]
        audio_gt = data["audio"]

        if self.cfg.preprocess.use_frame_pitch:
            pitch_input = data["frame_pitch"]

        N = audio_gt.shape[0]
        t = torch.randint(
            0, len(self.cfg.model.diffwave.noise_schedule), [N], device=self.device
        )
        noise_scale = self.noise_level[t].unsqueeze(1)
        noise_scale_sqrt = noise_scale**0.5
        noise = torch.randn_like(audio_gt)
        noisy_audio = noise_scale_sqrt * audio_gt + (1.0 - noise_scale) ** 0.5 * noise

        audio_pred = self.model(noisy_audio, t, mel_input)
        total_loss = self.criterion(noise, audio_pred.squeeze(1))

        return total_loss.item()

    def _inference(self, eval_mel, eval_pitch=None, use_pitch=False):
        """Inference during training for test audios."""
        if use_pitch:
            eval_pitch = align_length(eval_pitch, eval_mel.shape[1])
            eval_audio = vocoder_inference(
                self.cfg,
                self.model,
                torch.from_numpy(eval_mel).unsqueeze(0),
                f0s=torch.from_numpy(eval_pitch).unsqueeze(0).float(),
                device=next(self.model.parameters()).device,
            ).squeeze(0)
        else:
            eval_audio = vocoder_inference(
                self.cfg,
                self.model,
                torch.from_numpy(eval_mel).unsqueeze(0),
                device=next(self.model.parameters()).device,
            ).squeeze(0)
        return eval_audio

    def _load_model(self, checkpoint_dir, checkpoint_path=None, resume_type="resume"):
        """Load model from checkpoint. If checkpoint_path is None, it will
        load the latest checkpoint in checkpoint_dir. If checkpoint_path is not
        None, it will load the checkpoint specified by checkpoint_path. **Only use this
        method after** ``accelerator.prepare()``.
        """
        if checkpoint_path is None:
            ls = [str(i) for i in Path(checkpoint_dir).glob("*")]
            ls.sort(key=lambda x: int(x.split("_")[-3].split("-")[-1]), reverse=True)
            checkpoint_path = ls[0]
        if resume_type == "resume":
            self.accelerator.load_state(checkpoint_path)
            self.epoch = int(checkpoint_path.split("_")[-3].split("-")[-1]) + 1
            self.step = int(checkpoint_path.split("_")[-2].split("-")[-1]) + 1
        elif resume_type == "finetune":
            accelerate.load_checkpoint_and_dispatch(
                self.accelerator.unwrap_model(self.model),
                os.path.join(checkpoint_path, "pytorch_model.bin"),
            )
            self.logger.info("Load model weights for finetune SUCCESS!")
        else:
            raise ValueError("Unsupported resume type: {}".format(resume_type))
        return checkpoint_path

    def _count_parameters(self):
        result = sum(p.numel() for p in self.model.parameters())
        return result