Spaces:
Running
Running
File size: 11,427 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import json
from tqdm import tqdm
import os
import torchaudio
import torch
from utils.mfa_prepare import (
process_wav_files,
get_wav_files,
filter_wav_files_by_length,
)
from utils.cut_by_vad import cut_segments
from utils.whisper_transcription import asr_main
from utils.util import has_existed
import subprocess
import random
from collections import defaultdict
from glob import glob
import shutil
def librilight_statistics(data_dir):
"""Get statistics for librilight dataset"""
distribution2speakers2utts = defaultdict(lambda: defaultdict(list))
distribution_infos = glob(data_dir + "/*")
for distribution_info in distribution_infos:
distribution = distribution_info.split("/")[-1]
print(distribution)
speaker_infos = glob(distribution_info + "/*")
if len(speaker_infos) == 0:
continue
for speaker_info in speaker_infos:
speaker = speaker_info.split("/")[-1]
utts = glob(speaker_info + "/*.wav")
for utt in utts:
uid = utt.split("/")[-1].split(".")[0]
distribution2speakers2utts[distribution][speaker].append(uid)
return distribution2speakers2utts
def get_speakers_from_directory(directory):
return [
d for d in os.listdir(directory) if os.path.isdir(os.path.join(directory, d))
]
def split_dataset_by_speaker(base_dir, train_ratio=0.8, dev_ratio=0.1):
train_dir = os.path.join(base_dir, "train")
dev_dir = os.path.join(base_dir, "dev")
eval_dir = os.path.join(base_dir, "eval")
# Check if dataset is already split
if has_existed(train_dir) or has_existed(dev_dir) or has_existed(eval_dir):
print("Dataset already split. Calculating speakers...")
train_speakers = get_speakers_from_directory(train_dir)
dev_speakers = get_speakers_from_directory(dev_dir)
eval_speakers = get_speakers_from_directory(eval_dir)
all_speakers = train_speakers + dev_speakers + eval_speakers
unique_speakers = list(set(all_speakers))
unique_speakers.sort()
return unique_speakers
# List all directories in the base directory
all_speakers = [
d for d in os.listdir(base_dir) if os.path.isdir(os.path.join(base_dir, d))
]
random.shuffle(all_speakers)
# Calculate split sizes
total_speakers = len(all_speakers)
train_size = int(total_speakers * train_ratio)
dev_size = int(total_speakers * dev_ratio)
eval_size = total_speakers - train_size - dev_size
print("Total speakers:", total_speakers)
print("Train speakers:", train_size)
print("Dev speakers:", dev_size)
print("Eval speakers:", eval_size)
# Split directories
train_speakers = all_speakers[:train_size]
dev_speakers = all_speakers[train_size : train_size + dev_size]
eval_speakers = all_speakers[train_size + dev_size :]
# Function to move directories
def move_speakers(speakers, target_dir):
for speaker in speakers:
shutil.move(
os.path.join(base_dir, speaker), os.path.join(target_dir, speaker)
)
# Move directories
print("Moving directories...")
print("Moving Train speakers...")
move_speakers(train_speakers, train_dir)
print("Moving Dev speakers...")
move_speakers(dev_speakers, dev_dir)
print("Moving Eval speakers...")
move_speakers(eval_speakers, eval_dir)
unique_speakers = list(set(all_speakers))
unique_speakers.sort()
return unique_speakers
def save_meta_data(save_dir, processed_dir, distribution2speakers2utts, speakers):
"""Save metadata for librilight dataset"""
os.makedirs(save_dir, exist_ok=True)
train_output_file = os.path.join(save_dir, "train.json")
valid_output_file = os.path.join(save_dir, "dev.json")
test_output_file = os.path.join(save_dir, "eval.json")
singer_dict_file = os.path.join(save_dir, "singers.json")
utt2singer_file = os.path.join(save_dir, "utt2singer")
utt2singer = open(utt2singer_file, "w")
if has_existed(train_output_file):
print("Metadata already exists. Skipping...")
return
train = []
test = []
valid = []
train_index_count = 0
test_index_count = 0
valid_index_count = 0
train_total_duration = 0
test_total_duration = 0
valid_total_duration = 0
# Save metadata
for distribution, speakers2utts in tqdm(distribution2speakers2utts.items()):
for speaker, utts in tqdm(speakers2utts.items()):
for chosen_uid in utts:
res = {
"Dataset": "librilight",
"Singer": speaker,
"Uid": "{}#{}#{}".format(distribution, speaker, chosen_uid),
}
res["Path"] = "{}/{}/{}.wav".format(distribution, speaker, chosen_uid)
res["Path"] = os.path.join(processed_dir, res["Path"])
assert os.path.exists(res["Path"])
text_file_path = os.path.join(
processed_dir,
distribution,
speaker,
chosen_uid + ".txt",
)
with open(text_file_path, "r") as f:
lines = f.readlines()
assert len(lines) == 1
text = lines[0].strip()
res["Text"] = text
waveform, sample_rate = torchaudio.load(res["Path"])
duration = waveform.size(-1) / sample_rate
res["Duration"] = duration
if "train" in distribution:
res["index"] = train_index_count
train_total_duration += duration
train.append(res)
train_index_count += 1
elif "dev" in distribution:
res["index"] = valid_index_count
valid_total_duration += duration
valid.append(res)
valid_index_count += 1
elif "eval" in distribution:
res["index"] = test_index_count
test_total_duration += duration
test.append(res)
test_index_count += 1
utt2singer.write("{}\t{}\n".format(res["Uid"], res["Singer"]))
print("Done!")
print(
"Utterance count: train = {}, dev = {}, eval = {}".format(
len(train), len(valid), len(test)
)
)
print(
"#Train duration= {}, #Dev duration= {}, #Eval duration= {}".format(
train_total_duration / 3600,
valid_total_duration / 3600,
test_total_duration / 3600,
)
)
with open(train_output_file, "w") as f:
json.dump(train, f, indent=4, ensure_ascii=False)
with open(test_output_file, "w") as f:
json.dump(test, f, indent=4, ensure_ascii=False)
with open(valid_output_file, "w") as f:
json.dump(valid, f, indent=4, ensure_ascii=False)
utt2singer.close()
singer_lut = {name: i for i, name in enumerate(speakers)}
with open(singer_dict_file, "w") as f:
json.dump(singer_lut, f, indent=4, ensure_ascii=False)
print("Metadata saved to", save_dir)
def main(output_path, dataset_path, cfg):
"""Preprocess librilight dataset"""
n_cpus = cfg.n_cpus # number of cpus to use for preprocessing
n_gpus = cfg.n_gpus # number of gpus to use for transcription
cut_length = cfg.cut_length # target length of utterance in seconds
max_length = cfg.max_length # max length of utterance in seconds
# MFA files
mfa_config_path = cfg.mfa_config_path # path to mfa config file
mfa_dict_path = cfg.mfa_dict_path # path to mfa dict file
mfa_model_path = cfg.mfa_model_path # path to mfa model file
# check if mfa files exist
if (
not os.path.exists(mfa_dict_path)
or not os.path.exists(mfa_model_path)
or not os.path.exists(mfa_config_path)
):
raise Exception("MFA files not found.")
# Whisper model id
model_id = cfg.whisper_model_id # id of whisper model to use for transcription
subsets = [
d
for d in os.listdir(dataset_path)
if (
os.path.isdir(os.path.join(dataset_path, d))
and d in ["tiny", "small", "medium", "large"]
)
]
print("Found subsets:", subsets)
if len(subsets) == 0:
print("No subsets found. Exiting...")
return
# Preprocess each subset
for subset in subsets:
# Construct paths based on the base path
print("Pre-proccessing Libri-light subset:", subset)
raw_dir = f"{dataset_path}/{subset}"
save_dir = f"{output_path}/{subset}"
processed_dir = f"{dataset_path}/processed/{subset}"
os.makedirs(processed_dir, exist_ok=True)
os.makedirs(save_dir, exist_ok=True)
# Step 1: Segmentation
print("-" * 10)
print("Step 1: Segmentation")
print("Cutting audio files...")
cut_segments(raw_dir, processed_dir, cut_length, n_cpus)
# Steps 2 & 3: Filter and Preprocess
print("-" * 10)
print("Step 2 & 3: Filter and Preprocess")
print("Filtering and preprocessing audio files...")
wav_files = get_wav_files(processed_dir)
filtered_wav_files = filter_wav_files_by_length(wav_files, max_length)
process_wav_files(filtered_wav_files, processed_dir, n_cpus)
# Step 4 & 5: Transcription & Text-preprocess
print("-" * 10)
print("Step 4 & 5: Transcription & Text-preprocess")
print("Transcribing audio files...")
n_gpus = min(n_gpus, torch.cuda.device_count())
asr_main(processed_dir, n_gpus, model_id)
# Step 6: MFA Align
print("-" * 10)
print("Step 6: MFA Align")
print("Aligning audio files...")
command = [
"mfa",
"align",
"-v",
"-j",
str(n_cpus),
"-c",
mfa_config_path,
processed_dir,
mfa_dict_path,
mfa_model_path,
processed_dir,
"--output_format",
"long_textgrid",
"--clean",
"--overwrite",
]
subprocess.run(command, text=True)
# Step 7: train/dev/eval split
print("-" * 10)
print("Step 7: train/dev/eval split")
print("Splitting dataset by speaker...")
speakers = split_dataset_by_speaker(processed_dir)
# Step 8: Statistics
print("-" * 10)
print("Step 8: Statistics")
print("Calculating statistics...")
distribution2speakers2utts = librilight_statistics(processed_dir)
# Step 9: Save metadata
print("-" * 10)
print("Step 9: Save metadata")
print("Preparing Metadata for Librilight...")
save_meta_data(save_dir, processed_dir, distribution2speakers2utts, speakers)
print("Preprocessing subset", subset, "done!")
print("-" * 10)
if __name__ == "__main__":
dataset_path = "/path/to/dataset/librilight"
output_path = "/path/to/output"
main(output_path, dataset_path)
|