Spaces:
Running
Running
# Copyright (c) 2024 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
from torch.nn.utils import weight_norm | |
def WNConv1d(*args, **kwargs): | |
return weight_norm(nn.Conv1d(*args, **kwargs)) | |
def WNConvTranspose1d(*args, **kwargs): | |
return weight_norm(nn.ConvTranspose1d(*args, **kwargs)) | |
def l2norm(t): | |
return F.normalize(t, p=2, dim=-1) | |
def ema_inplace(moving_avg, new, decay): | |
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) | |
def laplace_smoothing(x, n_categories, eps=1e-5): | |
return (x + eps) / (x.sum() + n_categories * eps) | |
def sample_vectors(samples, num): | |
num_samples, device = samples.shape[0], samples.device | |
if num_samples >= num: | |
indices = torch.randperm(num_samples, device=device)[:num] | |
else: | |
indices = torch.randint(0, num_samples, (num,), device=device) | |
return samples[indices] | |
def kmeans(samples, num_clusters, num_iters=10, use_cosine_sim=False): | |
dim, dtype, device = samples.shape[-1], samples.dtype, samples.device | |
means = sample_vectors(samples, num_clusters) | |
for _ in range(num_iters): | |
if use_cosine_sim: | |
dists = samples @ means.t() | |
else: | |
diffs = rearrange(samples, "n d -> n () d") - rearrange( | |
means, "c d -> () c d" | |
) | |
dists = -(diffs**2).sum(dim=-1) | |
buckets = dists.max(dim=-1).indices | |
bins = torch.bincount(buckets, minlength=num_clusters) | |
zero_mask = bins == 0 | |
bins_min_clamped = bins.masked_fill(zero_mask, 1) | |
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype) | |
new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples) | |
new_means = new_means / bins_min_clamped[..., None] | |
if use_cosine_sim: | |
new_means = l2norm(new_means) | |
means = torch.where(zero_mask[..., None], means, new_means) | |
return means, bins | |
class EuclideanCodebook(nn.Module): | |
def __init__( | |
self, | |
dim, | |
codebook_size, | |
kmeans_init=False, | |
kmeans_iters=10, | |
decay=0.8, | |
eps=1e-5, | |
threshold_ema_dead_code=2, | |
weight_init=False, | |
): | |
super().__init__() | |
self.decay = decay | |
init_fn = torch.randn if not weight_init else torch.zeros | |
embed = init_fn(codebook_size, dim) | |
if weight_init: | |
nn.init.uniform_(embed, -1 / codebook_size, 1 / codebook_size) | |
self.codebook_size = codebook_size | |
self.kmeans_iters = kmeans_iters | |
self.eps = eps | |
self.threshold_ema_dead_code = threshold_ema_dead_code | |
self.register_buffer( | |
"initted", torch.Tensor([not kmeans_init]) | |
) # if kmeans_init is True, then initted is False; otherwise, initted is True | |
self.register_buffer("cluster_size", torch.zeros(codebook_size)) | |
self.register_buffer("embed", embed) | |
self.register_buffer("embed_avg", embed.clone()) | |
def init_embed_(self, data): | |
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters) | |
self.embed.data.copy_(embed) | |
self.embed_avg.data.copy_(embed) | |
self.cluster_size.data.copy_(cluster_size) | |
self.initted.data.copy_(torch.Tensor([True])) | |
def replace(self, samples, mask): | |
modified_codebook = torch.where( | |
mask[..., None], sample_vectors(samples, self.codebook_size), self.embed | |
) | |
self.embed.data.copy_(modified_codebook) | |
def expire_codes_(self, batch_samples): | |
if self.threshold_ema_dead_code == 0: | |
return | |
expired_codes = self.cluster_size < self.threshold_ema_dead_code | |
if not torch.any(expired_codes): | |
return | |
batch_samples = rearrange(batch_samples, "... d -> (...) d") | |
self.replace(batch_samples, mask=expired_codes) | |
def forward(self, x): | |
shape, dtype = x.shape, x.dtype | |
flatten = rearrange(x, "... d -> (...) d") | |
embed = self.embed.t() # (codebook_size, dim) -> (dim, codebook_size) | |
if not self.initted: | |
self.init_embed_(flatten) | |
dist = -( | |
flatten.pow(2).sum(1, keepdim=True) | |
- 2 * flatten @ embed | |
+ embed.pow(2).sum(0, keepdim=True) | |
) | |
embed_ind = dist.max(dim=-1).indices | |
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) | |
embed_ind = embed_ind.view(*shape[:-1]) | |
quantize = F.embedding(embed_ind, self.embed) | |
if self.training: | |
ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay) | |
embed_sum = ( | |
flatten.t() @ embed_onehot | |
) # (dim, ...) @ (..., codebook_size) -> (dim, codebook_size) | |
ema_inplace(self.embed_avg, embed_sum.t(), self.decay) | |
cluster_size = ( | |
laplace_smoothing(self.cluster_size, self.codebook_size, self.eps) | |
* self.cluster_size.sum() | |
) | |
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1) | |
self.embed.data.copy_(embed_normalized) | |
self.expire_codes_(x) | |
return quantize, embed_ind | |
def vq2emb(self, vq): | |
quantize = F.embedding(vq, self.embed) | |
return quantize | |
def latent2dist(self, x): | |
shape, dtype = x.shape, x.dtype | |
flatten = rearrange(x, "... d -> (...) d") | |
embed = self.embed.t() # (codebook_size, dim) -> (dim, codebook_size) | |
if not self.initted: | |
self.init_embed_(flatten) | |
dist = -( | |
flatten.pow(2).sum(1, keepdim=True) | |
- 2 * flatten @ embed | |
+ embed.pow(2).sum(0, keepdim=True) | |
) | |
embed_ind = dist.max(dim=-1).indices | |
embed_ind = embed_ind.view(*shape[:-1]) | |
quantize = F.embedding(embed_ind, self.embed) | |
dist = dist.view(*shape[:-1], -1) | |
return dist, embed_ind, quantize | |
class SimpleCodebook(nn.Module): | |
def __init__( | |
self, | |
dim, | |
codebook_size, | |
use_l2_normlize=False, | |
): | |
super().__init__() | |
self.dim = dim | |
self.codebook_size = codebook_size | |
self.use_l2_normlize = use_l2_normlize | |
self.embed = nn.Embedding(self.codebook_size, self.dim) | |
def forward(self, x): | |
shape, dtype = x.shape, x.dtype | |
flatten = rearrange(x, "... d -> (...) d") | |
embed = self.embed.weight.t() # (codebook_size, dim) -> (dim, codebook_size) | |
if self.use_l2_normlize: | |
flatten = F.normalize(flatten) | |
embed = F.normalize(embed) | |
dist = -( | |
flatten.pow(2).sum(1, keepdim=True) | |
- 2 * flatten @ embed | |
+ embed.pow(2).sum(0, keepdim=True) | |
) | |
embed_ind = dist.max(dim=-1).indices | |
embed_ind = embed_ind.view(*shape[:-1]) | |
quantize = F.embedding(embed_ind, self.embed) | |
return quantize, embed_ind | |
def vq2emb(self, vq): | |
quantize = F.embedding(vq, self.embed.weight) | |
return quantize | |
def latent2dist(self, x): | |
shape, dtype = x.shape, x.dtype | |
flatten = rearrange(x, "... d -> (...) d") | |
embed = self.embed.weight.t() # (codebook_size, dim) -> (dim, codebook_size) | |
if self.use_l2_normlize: | |
flatten = F.normalize(flatten) | |
embed = F.normalize(embed) | |
dist = -( | |
flatten.pow(2).sum(1, keepdim=True) | |
- 2 * flatten @ embed | |
+ embed.pow(2).sum(0, keepdim=True) | |
) | |
embed_ind = dist.max(dim=-1).indices | |
embed_ind = embed_ind.view(*shape[:-1]) | |
quantize = F.embedding(embed_ind, self.embed) | |
dist = dist.view(*shape[:-1], -1) | |
return dist, embed_ind, quantize | |
class VectorQuantize(nn.Module): | |
"""Vector quantization and factorized vecotor quantization implementation | |
Args: | |
input_dim (int): Dimension of input. | |
codebook_size (int): Codebook size. | |
codebook_dim (int): Codebook dimension. We suggest use codebook_dim = input_dim | |
if use codebook_type == "euclidean", otherwise, if you want to use | |
factorized vector quantization, use codebook_dim as small number (e.g. 8 or 32). | |
commitment (float): Weight for commitment loss. | |
use_l2_normlize (bool): Whether to use l2 normlized codes for factorized vecotor quantization, | |
we suggest use it as True if you want to use factorized vector quantization | |
kmeans_init (bool): Whether to use kmeans to initialize the codebooks. | |
kmeans_iters (int): Number of iterations used for kmeans initialization. | |
decay (float): Decay for exponential moving average over the codebooks. | |
epsilon (float): Epsilon value for numerical stability. | |
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes | |
that have an exponential moving average cluster size less than the specified threshold with | |
randomly selected vector from the current batch. | |
""" | |
def __init__( | |
self, | |
input_dim, | |
codebook_size, | |
codebook_dim, | |
commitment=0.005, | |
codebook_loss_weight=1.0, | |
use_l2_normlize=False, | |
codebook_type="euclidean", # "euclidean" or "simple" | |
kmeans_init=False, | |
kmeans_iters=10, | |
decay=0.8, | |
eps=1e-5, | |
threshold_ema_dead_code=2, | |
weight_init=False, | |
): | |
super().__init__() | |
self.input_dim = input_dim | |
self.codebook_size = codebook_size | |
self.codebook_dim = codebook_dim | |
self.commitment = commitment | |
self.codebook_loss_weight = codebook_loss_weight | |
self.use_l2_normlize = use_l2_normlize | |
self.codebook_type = codebook_type | |
self.kmeans_init = kmeans_init | |
self.kmeans_iters = kmeans_iters | |
self.decay = decay | |
self.eps = eps | |
self.threshold_ema_dead_code = threshold_ema_dead_code | |
self.weight_init = weight_init | |
if self.input_dim != self.codebook_dim: | |
self.in_project = WNConv1d(self.input_dim, self.codebook_dim, kernel_size=1) | |
self.out_project = WNConv1d( | |
self.codebook_dim, self.input_dim, kernel_size=1 | |
) | |
else: | |
self.in_project = nn.Identity() | |
self.out_project = nn.Identity() | |
if self.codebook_type == "euclidean": | |
self.codebook = EuclideanCodebook( | |
self.codebook_dim, | |
codebook_size=self.codebook_size, | |
kmeans_init=self.kmeans_init, | |
kmeans_iters=self.kmeans_iters, | |
decay=self.decay, | |
eps=self.eps, | |
threshold_ema_dead_code=self.threshold_ema_dead_code, | |
weight_init=self.weight_init, | |
) | |
elif self.codebook_type == "simple": | |
self.codebook = SimpleCodebook( | |
self.codebook_dim, | |
codebook_size=self.codebook_size, | |
use_l2_normlize=self.use_l2_normlize, | |
) | |
else: | |
raise NotImplementedError( | |
f"codebook_type {self.codebook_type} is not implemented!" | |
) | |
def forward(self, z): | |
""" | |
Parameters | |
---------- | |
z: torch.Tensor[B x D x T] | |
Returns | |
------- | |
z_q: torch.Tensor[B x D x T] | |
Quantized continuous representation of input | |
commit_loss: Tensor[B] | |
Commitment loss to train encoder to predict vectors closer to codebook entries | |
codebook_loss: Tensor[B] | |
Codebook loss to update the codebook | |
indices: torch.Tensor[B x T] | |
Codebook indices (quantized discrete representation of input) | |
z_e: torch.Tensor[B x D x T] | |
Projected latents (continuous representation of input before quantization) | |
""" | |
# Factorized codes project input into low-dimensional space if self.input_dim != self.codebook_dim | |
z_e = self.in_project(z) | |
z_q, indices = self.decode_latents(z_e) | |
# Compute commitment loss and codebook loss | |
if self.training: | |
commit_loss = ( | |
F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2]) | |
* self.commitment | |
) | |
codebook_loss = ( | |
F.mse_loss(z_q, z_e.detach(), reduction="none").mean([1, 2]) | |
* self.codebook_loss_weight | |
) | |
else: | |
commit_loss = torch.zeros(z.shape[0], device=z.device) | |
codebook_loss = torch.zeros(z.shape[0], device=z.device) | |
z_q = z_e + (z_q - z_e).detach() | |
z_q = self.out_project(z_q) | |
return z_q, commit_loss, codebook_loss, indices, z_e | |
def decode_latents(self, latents): | |
encodings = rearrange(latents, "b d t -> b t d") | |
z_q, indices = self.codebook(encodings) | |
z_q = z_q.transpose(1, 2) | |
return z_q, indices | |
def vq2emb(self, vq, out_proj=True): | |
emb = self.codebook.vq2emb(vq) | |
emb = emb.transpose(1, 2) | |
if out_proj: | |
emb = self.out_project(emb) | |
return emb | |
def latent2dist(self, latents): | |
latents = rearrange(latents, "b d t -> b t d") | |
dist, embed_ind, quantize = self.codebook.latent2dist(latents) | |
return dist, embed_ind, quantize.transpose(1, 2) | |