Spaces:
Running
Running
# This module is from [WeNet](https://github.com/wenet-e2e/wenet). | |
# ## Citations | |
# ```bibtex | |
# @inproceedings{yao2021wenet, | |
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, | |
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, | |
# booktitle={Proc. Interspeech}, | |
# year={2021}, | |
# address={Brno, Czech Republic }, | |
# organization={IEEE} | |
# } | |
# @article{zhang2022wenet, | |
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, | |
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, | |
# journal={arXiv preprint arXiv:2203.15455}, | |
# year={2022} | |
# } | |
# | |
"""SqueezeformerEncoderLayer definition.""" | |
import torch | |
import torch.nn as nn | |
from typing import Optional, Tuple | |
class SqueezeformerEncoderLayer(nn.Module): | |
"""Encoder layer module. | |
Args: | |
size (int): Input dimension. | |
self_attn (torch.nn.Module): Self-attention module instance. | |
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` | |
instance can be used as the argument. | |
feed_forward1 (torch.nn.Module): Feed-forward module instance. | |
`PositionwiseFeedForward` instance can be used as the argument. | |
conv_module (torch.nn.Module): Convolution module instance. | |
`ConvlutionModule` instance can be used as the argument. | |
feed_forward2 (torch.nn.Module): Feed-forward module instance. | |
`PositionwiseFeedForward` instance can be used as the argument. | |
dropout_rate (float): Dropout rate. | |
normalize_before (bool): | |
True: use layer_norm before each sub-block. | |
False: use layer_norm after each sub-block. | |
""" | |
def __init__( | |
self, | |
size: int, | |
self_attn: torch.nn.Module, | |
feed_forward1: Optional[nn.Module] = None, | |
conv_module: Optional[nn.Module] = None, | |
feed_forward2: Optional[nn.Module] = None, | |
normalize_before: bool = False, | |
dropout_rate: float = 0.1, | |
concat_after: bool = False, | |
): | |
super(SqueezeformerEncoderLayer, self).__init__() | |
self.size = size | |
self.self_attn = self_attn | |
self.layer_norm1 = nn.LayerNorm(size) | |
self.ffn1 = feed_forward1 | |
self.layer_norm2 = nn.LayerNorm(size) | |
self.conv_module = conv_module | |
self.layer_norm3 = nn.LayerNorm(size) | |
self.ffn2 = feed_forward2 | |
self.layer_norm4 = nn.LayerNorm(size) | |
self.normalize_before = normalize_before | |
self.dropout = nn.Dropout(dropout_rate) | |
self.concat_after = concat_after | |
if concat_after: | |
self.concat_linear = nn.Linear(size + size, size) | |
else: | |
self.concat_linear = nn.Identity() | |
def forward( | |
self, | |
x: torch.Tensor, | |
mask: torch.Tensor, | |
pos_emb: torch.Tensor, | |
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), | |
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
# self attention module | |
residual = x | |
if self.normalize_before: | |
x = self.layer_norm1(x) | |
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb, att_cache) | |
if self.concat_after: | |
x_concat = torch.cat((x, x_att), dim=-1) | |
x = residual + self.concat_linear(x_concat) | |
else: | |
x = residual + self.dropout(x_att) | |
if not self.normalize_before: | |
x = self.layer_norm1(x) | |
# ffn module | |
residual = x | |
if self.normalize_before: | |
x = self.layer_norm2(x) | |
x = self.ffn1(x) | |
x = residual + self.dropout(x) | |
if not self.normalize_before: | |
x = self.layer_norm2(x) | |
# conv module | |
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) | |
residual = x | |
if self.normalize_before: | |
x = self.layer_norm3(x) | |
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache) | |
x = residual + self.dropout(x) | |
if not self.normalize_before: | |
x = self.layer_norm3(x) | |
# ffn module | |
residual = x | |
if self.normalize_before: | |
x = self.layer_norm4(x) | |
x = self.ffn2(x) | |
# we do not use dropout here since it is inside feed forward function | |
x = residual + self.dropout(x) | |
if not self.normalize_before: | |
x = self.layer_norm4(x) | |
return x, mask, new_att_cache, new_cnn_cache | |