Spaces:
Running
Running
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os | |
import json | |
import torchaudio | |
from tqdm import tqdm | |
from glob import glob | |
from collections import defaultdict | |
from utils.util import has_existed | |
def libritts_statistics(data_dir): | |
speakers = [] | |
distribution2speakers2pharases2utts = defaultdict( | |
lambda: defaultdict(lambda: defaultdict(list)) | |
) | |
distribution_infos = glob(data_dir + "/*") | |
for distribution_info in distribution_infos: | |
distribution = distribution_info.split("/")[-1] | |
print(distribution) | |
speaker_infos = glob(distribution_info + "/*") | |
if len(speaker_infos) == 0: | |
continue | |
for speaker_info in speaker_infos: | |
speaker = speaker_info.split("/")[-1] | |
speakers.append(speaker) | |
pharase_infos = glob(speaker_info + "/*") | |
for pharase_info in pharase_infos: | |
pharase = pharase_info.split("/")[-1] | |
utts = glob(pharase_info + "/*.wav") | |
for utt in utts: | |
uid = utt.split("/")[-1].split(".")[0] | |
distribution2speakers2pharases2utts[distribution][speaker][ | |
pharase | |
].append(uid) | |
unique_speakers = list(set(speakers)) | |
unique_speakers.sort() | |
print("Speakers: \n{}".format("\t".join(unique_speakers))) | |
return distribution2speakers2pharases2utts, unique_speakers | |
def main(output_path, dataset_path): | |
print("-" * 10) | |
print("Preparing samples for libritts...\n") | |
save_dir = os.path.join(output_path, "libritts") | |
os.makedirs(save_dir, exist_ok=True) | |
train_output_file = os.path.join(save_dir, "train.json") | |
test_output_file = os.path.join(save_dir, "test.json") | |
valid_output_file = os.path.join(save_dir, "valid.json") | |
singer_dict_file = os.path.join(save_dir, "singers.json") | |
utt2singer_file = os.path.join(save_dir, "utt2singer") | |
if has_existed(train_output_file): | |
return | |
utt2singer = open(utt2singer_file, "w") | |
# Load | |
libritts_path = dataset_path | |
distribution2speakers2pharases2utts, unique_speakers = libritts_statistics( | |
libritts_path | |
) | |
# We select pharases of standard spekaer as test songs | |
train = [] | |
test = [] | |
valid = [] | |
train_index_count = 0 | |
test_index_count = 0 | |
valid_index_count = 0 | |
train_total_duration = 0 | |
test_total_duration = 0 | |
valid_total_duration = 0 | |
for distribution, speakers2pharases2utts in tqdm( | |
distribution2speakers2pharases2utts.items() | |
): | |
for speaker, pharases2utts in tqdm(speakers2pharases2utts.items()): | |
pharase_names = list(pharases2utts.keys()) | |
for chosen_pharase in pharase_names: | |
for chosen_uid in pharases2utts[chosen_pharase]: | |
res = { | |
"Dataset": "libritts", | |
"Singer": speaker, | |
"Uid": "{}#{}#{}#{}".format( | |
distribution, speaker, chosen_pharase, chosen_uid | |
), | |
} | |
res["Path"] = "{}/{}/{}/{}.wav".format( | |
distribution, speaker, chosen_pharase, chosen_uid | |
) | |
res["Path"] = os.path.join(libritts_path, res["Path"]) | |
assert os.path.exists(res["Path"]) | |
text_file_path = os.path.join( | |
libritts_path, | |
distribution, | |
speaker, | |
chosen_pharase, | |
chosen_uid + ".normalized.txt", | |
) | |
with open(text_file_path, "r") as f: | |
lines = f.readlines() | |
assert len(lines) == 1 | |
text = lines[0].strip() | |
res["Text"] = text | |
waveform, sample_rate = torchaudio.load(res["Path"]) | |
duration = waveform.size(-1) / sample_rate | |
res["Duration"] = duration | |
if "test" in distribution: | |
res["index"] = test_index_count | |
test_total_duration += duration | |
test.append(res) | |
test_index_count += 1 | |
elif "train" in distribution: | |
res["index"] = train_index_count | |
train_total_duration += duration | |
train.append(res) | |
train_index_count += 1 | |
elif "dev" in distribution: | |
res["index"] = valid_index_count | |
valid_total_duration += duration | |
valid.append(res) | |
valid_index_count += 1 | |
utt2singer.write("{}\t{}\n".format(res["Uid"], res["Singer"])) | |
print( | |
"#Train = {}, #Test = {}, #Valid = {}".format(len(train), len(test), len(valid)) | |
) | |
print( | |
"#Train hours= {}, #Test hours= {}, #Valid hours= {}".format( | |
train_total_duration / 3600, | |
test_total_duration / 3600, | |
valid_total_duration / 3600, | |
) | |
) | |
# Save train.json and test.json | |
with open(train_output_file, "w") as f: | |
json.dump(train, f, indent=4, ensure_ascii=False) | |
with open(test_output_file, "w") as f: | |
json.dump(test, f, indent=4, ensure_ascii=False) | |
with open(valid_output_file, "w") as f: | |
json.dump(valid, f, indent=4, ensure_ascii=False) | |
# Save singers.json | |
singer_lut = {name: i for i, name in enumerate(unique_speakers)} | |
with open(singer_dict_file, "w") as f: | |
json.dump(singer_lut, f, indent=4, ensure_ascii=False) | |