Spaces:
Running
Running
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
# This code is modified from https://github.com/svc-develop-team/so-vits-svc/blob/4.0/preprocess_hubert_f0.py | |
import os | |
import librosa | |
import torch | |
import numpy as np | |
from fairseq import checkpoint_utils | |
from tqdm import tqdm | |
import torch | |
def load_hubert_model(hps): | |
# Load model | |
ckpt_path = hps.hubert_file | |
print("Load Hubert Model...") | |
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( | |
[ckpt_path], | |
suffix="", | |
) | |
model = models[0] | |
model.eval() | |
if torch.cuda.is_available(): | |
model = model.cuda() | |
return model | |
def get_hubert_content(hmodel, wav_16k_tensor): | |
feats = wav_16k_tensor | |
if feats.dim() == 2: # double channels | |
feats = feats.mean(-1) | |
assert feats.dim() == 1, feats.dim() | |
feats = feats.view(1, -1) | |
padding_mask = torch.BoolTensor(feats.shape).fill_(False) | |
inputs = { | |
"source": feats.to(wav_16k_tensor.device), | |
"padding_mask": padding_mask.to(wav_16k_tensor.device), | |
"output_layer": 9, # layer 9 | |
} | |
with torch.no_grad(): | |
logits = hmodel.extract_features(**inputs) | |
feats = hmodel.final_proj(logits[0]).squeeze(0) | |
return feats | |
def content_vector_encoder(model, audio_path, default_sampling_rate=16000): | |
""" | |
# content vector default sr: 16000 | |
""" | |
wav16k, sr = librosa.load(audio_path, sr=default_sampling_rate) | |
device = next(model.parameters()).device | |
wav16k = torch.from_numpy(wav16k).to(device) | |
# (1, 256, frame_len) | |
content_feature = get_hubert_content(model, wav_16k_tensor=wav16k) | |
return content_feature.cpu().detach().numpy() | |
def repeat_expand_2d(content, target_len): | |
""" | |
content : [hubert_dim(256), src_len] | |
target: [hubert_dim(256), target_len] | |
""" | |
src_len = content.shape[-1] | |
target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to( | |
content.device | |
) | |
temp = torch.arange(src_len + 1) * target_len / src_len | |
current_pos = 0 | |
for i in range(target_len): | |
if i < temp[current_pos + 1]: | |
target[:, i] = content[:, current_pos] | |
else: | |
current_pos += 1 | |
target[:, i] = content[:, current_pos] | |
return target | |
def get_mapped_features(raw_content_features, mapping_features): | |
""" | |
Content Vector: frameshift = 20ms, hop_size = 480 in 24k | |
Now it's only used for mapping to bigvgan's mels (sr = 24k, hop_size = 256, frameshift ~= 10.7 ms) | |
""" | |
source_hop = 480 | |
target_hop = 256 | |
factor = np.gcd(source_hop, target_hop) | |
source_hop //= factor | |
target_hop //= factor | |
print( | |
"Mapping source's {} frames => target's {} frames".format( | |
target_hop, source_hop | |
) | |
) | |
results = [] | |
for index, mapping_feat in enumerate(tqdm(mapping_features)): | |
# mappping_feat: (mels_frame_len, n_mels) | |
target_len = len(mapping_feat) | |
# (source_len, 256) | |
raw_feats = raw_content_features[index][0].cpu().numpy().T | |
source_len, width = raw_feats.shape | |
# const ~= target_len * target_hop | |
const = source_len * source_hop // target_hop * target_hop | |
# (source_len * source_hop, dim) | |
up_sampling_feats = np.repeat(raw_feats, source_hop, axis=0) | |
# (const, dim) -> (const/target_hop, target_hop, dim) -> (const/target_hop, dim) | |
down_sampling_feats = np.average( | |
up_sampling_feats[:const].reshape(-1, target_hop, width), axis=1 | |
) | |
err = abs(target_len - len(down_sampling_feats)) | |
if err > 3: | |
print("index:", index) | |
print("mels:", mapping_feat.shape) | |
print("raw content vector:", raw_feats.shape) | |
print("up_sampling:", up_sampling_feats.shape) | |
print("down_sampling_feats:", down_sampling_feats.shape) | |
exit() | |
if len(down_sampling_feats) < target_len: | |
# (1, dim) -> (err, dim) | |
end = down_sampling_feats[-1][None, :].repeat(err, axis=0) | |
down_sampling_feats = np.concatenate([down_sampling_feats, end], axis=0) | |
# (target_len, dim) | |
feats = down_sampling_feats[:target_len] | |
results.append(feats) | |
return results | |
def extract_hubert_features_of_dataset(datasets, model, out_dir): | |
for utt in tqdm(datasets): | |
uid = utt["Uid"] | |
audio_path = utt["Path"] | |
content_vector_feature = content_vector_encoder(model, audio_path) # (T, 256) | |
save_path = os.path.join(out_dir, uid + ".npy") | |
np.save(save_path, content_vector_feature) | |