Spaces:
Running
Running
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from modules.distributions.distributions import DiagonalGaussianDistribution | |
def nonlinearity(x): | |
# swish | |
return x * torch.sigmoid(x) | |
def Normalize(in_channels): | |
return torch.nn.GroupNorm( | |
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True | |
) | |
class Upsample2d(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
self.conv = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=3, stride=1, padding=1 | |
) | |
def forward(self, x): | |
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") | |
if self.with_conv: | |
x = self.conv(x) | |
return x | |
class Upsample1d(Upsample2d): | |
def __init__(self, in_channels, with_conv): | |
super().__init__(in_channels, with_conv) | |
if self.with_conv: | |
self.conv = torch.nn.Conv1d( | |
in_channels, in_channels, kernel_size=3, stride=1, padding=1 | |
) | |
class Downsample2d(nn.Module): | |
def __init__(self, in_channels, with_conv): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
# no asymmetric padding in torch conv, must do it ourselves | |
self.conv = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=3, stride=2, padding=0 | |
) | |
self.pad = (0, 1, 0, 1) | |
else: | |
self.avg_pool = nn.AvgPool2d(kernel_size=2, stride=2) | |
def forward(self, x): | |
if self.with_conv: # bp: check self.avgpool and self.pad | |
x = torch.nn.functional.pad(x, self.pad, mode="constant", value=0) | |
x = self.conv(x) | |
else: | |
x = self.avg_pool(x) | |
return x | |
class Downsample1d(Downsample2d): | |
def __init__(self, in_channels, with_conv): | |
super().__init__(in_channels, with_conv) | |
if self.with_conv: | |
# no asymmetric padding in torch conv, must do it ourselves | |
# TODO: can we replace it just with conv2d with padding 1? | |
self.conv = torch.nn.Conv1d( | |
in_channels, in_channels, kernel_size=3, stride=2, padding=0 | |
) | |
self.pad = (1, 1) | |
else: | |
self.avg_pool = nn.AvgPool1d(kernel_size=2, stride=2) | |
class ResnetBlock(nn.Module): | |
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.norm1 = Normalize(in_channels) | |
self.conv1 = torch.nn.Conv2d( | |
in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
self.norm2 = Normalize(out_channels) | |
self.dropout = torch.nn.Dropout(dropout) | |
self.conv2 = torch.nn.Conv2d( | |
out_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
self.conv_shortcut = torch.nn.Conv2d( | |
in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
else: | |
self.nin_shortcut = torch.nn.Conv2d( | |
in_channels, out_channels, kernel_size=1, stride=1, padding=0 | |
) | |
def forward(self, x): | |
h = x | |
h = self.norm1(h) | |
h = nonlinearity(h) | |
h = self.conv1(h) | |
h = self.norm2(h) | |
h = nonlinearity(h) | |
h = self.dropout(h) | |
h = self.conv2(h) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
x = self.conv_shortcut(x) | |
else: | |
x = self.nin_shortcut(x) | |
return x + h | |
class ResnetBlock1d(ResnetBlock): | |
def __init__( | |
self, | |
*, | |
in_channels, | |
out_channels=None, | |
conv_shortcut=False, | |
dropout, | |
temb_channels=512 | |
): | |
super().__init__( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
conv_shortcut=conv_shortcut, | |
dropout=dropout, | |
) | |
self.conv1 = torch.nn.Conv1d( | |
in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
self.conv2 = torch.nn.Conv1d( | |
out_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
self.conv_shortcut = torch.nn.Conv1d( | |
in_channels, out_channels, kernel_size=3, stride=1, padding=1 | |
) | |
else: | |
self.nin_shortcut = torch.nn.Conv1d( | |
in_channels, out_channels, kernel_size=1, stride=1, padding=0 | |
) | |
class Encoder2d(nn.Module): | |
def __init__( | |
self, | |
*, | |
ch, | |
ch_mult=(1, 2, 4, 8), | |
num_res_blocks, | |
dropout=0.0, | |
resamp_with_conv=True, | |
in_channels, | |
z_channels, | |
double_z=True, | |
**ignore_kwargs | |
): | |
super().__init__() | |
self.ch = ch | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.in_channels = in_channels | |
# downsampling | |
self.conv_in = torch.nn.Conv2d( | |
in_channels, self.ch, kernel_size=3, stride=1, padding=1 | |
) | |
in_ch_mult = (1,) + tuple(ch_mult) | |
self.down = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
block_in = ch * in_ch_mult[i_level] | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks): | |
block.append( | |
ResnetBlock( | |
in_channels=block_in, out_channels=block_out, dropout=dropout | |
) | |
) | |
block_in = block_out | |
down = nn.Module() | |
down.block = block | |
if i_level != self.num_resolutions - 1: | |
down.downsample = Downsample2d(block_in, resamp_with_conv) | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock( | |
in_channels=block_in, out_channels=block_in, dropout=dropout | |
) | |
self.mid.block_2 = ResnetBlock( | |
in_channels=block_in, out_channels=block_in, dropout=dropout | |
) | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d( | |
block_in, | |
2 * z_channels if double_z else z_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
def forward(self, x): | |
# downsampling | |
hs = [self.conv_in(x)] | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](hs[-1]) | |
hs.append(h) | |
if i_level != self.num_resolutions - 1: | |
hs.append(self.down[i_level].downsample(hs[-1])) | |
# middle | |
h = hs[-1] | |
h = self.mid.block_1(h) | |
h = self.mid.block_2(h) | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
# TODO: Encoder1d | |
class Encoder1d(Encoder2d): ... | |
class Decoder2d(nn.Module): | |
def __init__( | |
self, | |
*, | |
ch, | |
out_ch, | |
ch_mult=(1, 2, 4, 8), | |
num_res_blocks, | |
dropout=0.0, | |
resamp_with_conv=True, | |
in_channels, | |
z_channels, | |
give_pre_end=False, | |
**ignorekwargs | |
): | |
super().__init__() | |
self.ch = ch | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.in_channels = in_channels | |
self.give_pre_end = give_pre_end | |
# compute in_ch_mult, block_in and curr_res at lowest res | |
in_ch_mult = (1,) + tuple(ch_mult) | |
block_in = ch * ch_mult[self.num_resolutions - 1] | |
# self.z_shape = (1,z_channels,curr_res,curr_res) | |
# print("Working with z of shape {} = {} dimensions.".format( | |
# self.z_shape, np.prod(self.z_shape))) | |
# z to block_in | |
self.conv_in = torch.nn.Conv2d( | |
z_channels, block_in, kernel_size=3, stride=1, padding=1 | |
) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock( | |
in_channels=block_in, out_channels=block_in, dropout=dropout | |
) | |
self.mid.block_2 = ResnetBlock( | |
in_channels=block_in, out_channels=block_in, dropout=dropout | |
) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks + 1): | |
block.append( | |
ResnetBlock( | |
in_channels=block_in, out_channels=block_out, dropout=dropout | |
) | |
) | |
block_in = block_out | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Upsample2d(block_in, resamp_with_conv) | |
self.up.insert(0, up) # prepend to get consistent order | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d( | |
block_in, out_ch, kernel_size=3, stride=1, padding=1 | |
) | |
def forward(self, z): | |
self.last_z_shape = z.shape | |
# z to block_in | |
h = self.conv_in(z) | |
# middle | |
h = self.mid.block_1(h) | |
h = self.mid.block_2(h) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks + 1): | |
h = self.up[i_level].block[i_block](h) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
if self.give_pre_end: | |
return h | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
# TODO: decoder1d | |
class Decoder1d(Decoder2d): ... | |
class AutoencoderKL(nn.Module): | |
def __init__(self, cfg): | |
super().__init__() | |
self.cfg = cfg | |
self.encoder = Encoder2d( | |
ch=cfg.ch, | |
ch_mult=cfg.ch_mult, | |
num_res_blocks=cfg.num_res_blocks, | |
in_channels=cfg.in_channels, | |
z_channels=cfg.z_channels, | |
double_z=cfg.double_z, | |
) | |
self.decoder = Decoder2d( | |
ch=cfg.ch, | |
ch_mult=cfg.ch_mult, | |
num_res_blocks=cfg.num_res_blocks, | |
out_ch=cfg.out_ch, | |
z_channels=cfg.z_channels, | |
in_channels=None, | |
) | |
assert self.cfg.double_z | |
self.quant_conv = torch.nn.Conv2d(2 * cfg.z_channels, 2 * cfg.z_channels, 1) | |
self.post_quant_conv = torch.nn.Conv2d(cfg.z_channels, cfg.z_channels, 1) | |
self.embed_dim = cfg.z_channels | |
def encode(self, x): | |
h = self.encoder(x) | |
moments = self.quant_conv(h) | |
posterior = DiagonalGaussianDistribution(moments) | |
return posterior | |
def decode(self, z): | |
z = self.post_quant_conv(z) | |
dec = self.decoder(z) | |
return dec | |
def forward(self, input, sample_posterior=True): | |
posterior = self.encode(input) | |
if sample_posterior: | |
z = posterior.sample() | |
else: | |
z = posterior.mode() | |
dec = self.decode(z) | |
return dec, posterior | |
def get_last_layer(self): | |
return self.decoder.conv_out.weight | |