Spaces:
Running
Running
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from abc import abstractmethod | |
from functools import partial | |
import math | |
from typing import Iterable | |
import os | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
from einops import repeat | |
from models.tta.ldm.attention import SpatialTransformer | |
# from attention import SpatialTransformer | |
class CheckpointFunction(torch.autograd.Function): | |
def forward(ctx, run_function, length, *args): | |
ctx.run_function = run_function | |
ctx.input_tensors = list(args[:length]) | |
ctx.input_params = list(args[length:]) | |
with torch.no_grad(): | |
output_tensors = ctx.run_function(*ctx.input_tensors) | |
return output_tensors | |
def backward(ctx, *output_grads): | |
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] | |
with torch.enable_grad(): | |
# Fixes a bug where the first op in run_function modifies the | |
# Tensor storage in place, which is not allowed for detach()'d | |
# Tensors. | |
shallow_copies = [x.view_as(x) for x in ctx.input_tensors] | |
output_tensors = ctx.run_function(*shallow_copies) | |
input_grads = torch.autograd.grad( | |
output_tensors, | |
ctx.input_tensors + ctx.input_params, | |
output_grads, | |
allow_unused=True, | |
) | |
del ctx.input_tensors | |
del ctx.input_params | |
del output_tensors | |
return (None, None) + input_grads | |
def checkpoint(func, inputs, params, flag): | |
""" | |
Evaluate a function without caching intermediate activations, allowing for | |
reduced memory at the expense of extra compute in the backward pass. | |
:param func: the function to evaluate. | |
:param inputs: the argument sequence to pass to `func`. | |
:param params: a sequence of parameters `func` depends on but does not | |
explicitly take as arguments. | |
:param flag: if False, disable gradient checkpointing. | |
""" | |
if flag: | |
args = tuple(inputs) + tuple(params) | |
return CheckpointFunction.apply(func, len(inputs), *args) | |
else: | |
return func(*inputs) | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param timesteps: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an [N x dim] Tensor of positional embeddings. | |
""" | |
if not repeat_only: | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) | |
* torch.arange(start=0, end=half, dtype=torch.float32) | |
/ half | |
).to(device=timesteps.device) | |
args = timesteps[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat( | |
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1 | |
) | |
else: | |
embedding = repeat(timesteps, "b -> b d", d=dim) | |
return embedding | |
class GroupNorm32(nn.GroupNorm): | |
def forward(self, x): | |
return super().forward(x.float()).type(x.dtype) | |
def normalization(channels): | |
""" | |
Make a standard normalization layer. | |
:param channels: number of input channels. | |
:return: an nn.Module for normalization. | |
""" | |
return GroupNorm32(32, channels) | |
def count_flops_attn(model, _x, y): | |
""" | |
A counter for the `thop` package to count the operations in an | |
attention operation. | |
Meant to be used like: | |
macs, params = thop.profile( | |
model, | |
inputs=(inputs, timestamps), | |
custom_ops={QKVAttention: QKVAttention.count_flops}, | |
) | |
""" | |
b, c, *spatial = y[0].shape | |
num_spatial = int(np.prod(spatial)) | |
# We perform two matmuls with the same number of ops. | |
# The first computes the weight matrix, the second computes | |
# the combination of the value vectors. | |
matmul_ops = 2 * b * (num_spatial**2) * c | |
model.total_ops += torch.DoubleTensor([matmul_ops]) | |
def conv_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D convolution module. | |
""" | |
if dims == 1: | |
return nn.Conv1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.Conv3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def avg_pool_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D average pooling module. | |
""" | |
if dims == 1: | |
return nn.AvgPool1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.AvgPool2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.AvgPool3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
class QKVAttention(nn.Module): | |
""" | |
A module which performs QKV attention and splits in a different order. | |
""" | |
def __init__(self, n_heads): | |
super().__init__() | |
self.n_heads = n_heads | |
def forward(self, qkv): | |
""" | |
Apply QKV attention. | |
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. | |
:return: an [N x (H * C) x T] tensor after attention. | |
""" | |
bs, width, length = qkv.shape | |
assert width % (3 * self.n_heads) == 0 | |
ch = width // (3 * self.n_heads) | |
q, k, v = qkv.chunk(3, dim=1) # [N x (H * C) x T] | |
scale = 1 / math.sqrt(math.sqrt(ch)) | |
weight = torch.einsum( | |
"bct,bcs->bts", | |
(q * scale).view(bs * self.n_heads, ch, length), | |
(k * scale).view(bs * self.n_heads, ch, length), | |
) # More stable with f16 than dividing afterwards | |
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) | |
a = torch.einsum( | |
"bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length) | |
) | |
return a.reshape(bs, -1, length) | |
def count_flops(model, _x, y): | |
return count_flops_attn(model, _x, y) | |
class QKVAttentionLegacy(nn.Module): | |
""" | |
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping | |
""" | |
def __init__(self, n_heads): | |
super().__init__() | |
self.n_heads = n_heads | |
def forward(self, qkv): | |
""" | |
Apply QKV attention. | |
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. | |
:return: an [N x (H * C) x T] tensor after attention. | |
""" | |
bs, width, length = qkv.shape | |
assert width % (3 * self.n_heads) == 0 | |
ch = width // (3 * self.n_heads) | |
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) | |
scale = 1 / math.sqrt(math.sqrt(ch)) | |
weight = torch.einsum( | |
"bct,bcs->bts", q * scale, k * scale | |
) # More stable with f16 than dividing afterwards | |
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) | |
a = torch.einsum("bts,bcs->bct", weight, v) | |
return a.reshape(bs, -1, length) | |
def count_flops(model, _x, y): | |
return count_flops_attn(model, _x, y) | |
class AttentionPool2d(nn.Module): | |
""" | |
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py | |
""" | |
def __init__( | |
self, | |
spacial_dim: int, | |
embed_dim: int, | |
num_heads_channels: int, | |
output_dim: int = None, | |
): | |
super().__init__() | |
self.positional_embedding = nn.Parameter( | |
torch.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5 | |
) | |
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) | |
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) | |
self.num_heads = embed_dim // num_heads_channels | |
self.attention = QKVAttention(self.num_heads) | |
def forward(self, x): | |
b, c, *_spatial = x.shape | |
x = x.reshape(b, c, -1) # NC(HW) | |
x = torch.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1) | |
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1) | |
x = self.qkv_proj(x) | |
x = self.attention(x) | |
x = self.c_proj(x) | |
return x[:, :, 0] | |
class TimestepBlock(nn.Module): | |
""" | |
Any module where forward() takes timestep embeddings as a second argument. | |
""" | |
def forward(self, x, emb): | |
""" | |
Apply the module to `x` given `emb` timestep embeddings. | |
""" | |
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): | |
""" | |
A sequential module that passes timestep embeddings to the children that | |
support it as an extra input. | |
""" | |
def forward(self, x, emb, context=None): | |
for layer in self: | |
if isinstance(layer, TimestepBlock): | |
x = layer(x, emb) | |
elif isinstance(layer, SpatialTransformer): | |
x = layer(x, context) | |
else: | |
x = layer(x) | |
return x | |
class Upsample(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
upsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
if use_conv: | |
self.conv = conv_nd( | |
dims, self.channels, self.out_channels, 3, padding=padding | |
) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
if self.dims == 3: | |
x = F.interpolate( | |
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" | |
) | |
else: | |
x = F.interpolate(x, scale_factor=2, mode="nearest") | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
class TransposedUpsample(nn.Module): | |
"Learned 2x upsampling without padding" | |
def __init__(self, channels, out_channels=None, ks=5): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.up = nn.ConvTranspose2d( | |
self.channels, self.out_channels, kernel_size=ks, stride=2 | |
) | |
def forward(self, x): | |
return self.up(x) | |
class Downsample(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
downsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
stride = 2 if dims != 3 else (1, 2, 2) | |
if use_conv: | |
self.op = conv_nd( | |
dims, | |
self.channels, | |
self.out_channels, | |
3, | |
stride=stride, | |
padding=padding, | |
) | |
else: | |
assert self.channels == self.out_channels | |
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.op(x) | |
class ResBlock(TimestepBlock): | |
""" | |
A residual block that can optionally change the number of channels. | |
:param channels: the number of input channels. | |
:param emb_channels: the number of timestep embedding channels. | |
:param dropout: the rate of dropout. | |
:param out_channels: if specified, the number of out channels. | |
:param use_conv: if True and out_channels is specified, use a spatial | |
convolution instead of a smaller 1x1 convolution to change the | |
channels in the skip connection. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param use_checkpoint: if True, use gradient checkpointing on this module. | |
:param up: if True, use this block for upsampling. | |
:param down: if True, use this block for downsampling. | |
""" | |
def __init__( | |
self, | |
channels, | |
emb_channels, | |
dropout, | |
out_channels=None, | |
use_conv=False, | |
use_scale_shift_norm=False, | |
dims=2, | |
use_checkpoint=False, | |
up=False, | |
down=False, | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_checkpoint = use_checkpoint | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.in_layers = nn.Sequential( | |
normalization(channels), | |
nn.SiLU(), | |
conv_nd(dims, channels, self.out_channels, 3, padding=1), | |
) | |
self.updown = up or down | |
if up: | |
self.h_upd = Upsample(channels, False, dims) | |
self.x_upd = Upsample(channels, False, dims) | |
elif down: | |
self.h_upd = Downsample(channels, False, dims) | |
self.x_upd = Downsample(channels, False, dims) | |
else: | |
self.h_upd = self.x_upd = nn.Identity() | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear( | |
emb_channels, | |
2 * self.out_channels if use_scale_shift_norm else self.out_channels, | |
), | |
) | |
self.out_layers = nn.Sequential( | |
normalization(self.out_channels), | |
nn.SiLU(), | |
nn.Dropout(p=dropout), | |
zero_module( | |
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) | |
), | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
elif use_conv: | |
self.skip_connection = conv_nd( | |
dims, channels, self.out_channels, 3, padding=1 | |
) | |
else: | |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) | |
def forward(self, x, emb): | |
""" | |
Apply the block to a Tensor, conditioned on a timestep embedding. | |
:param x: an [N x C x ...] Tensor of features. | |
:param emb: an [N x emb_channels] Tensor of timestep embeddings. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
return checkpoint( | |
self._forward, (x, emb), self.parameters(), self.use_checkpoint | |
) | |
def _forward(self, x, emb): | |
if self.updown: | |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
h = in_rest(x) | |
h = self.h_upd(h) | |
x = self.x_upd(x) | |
h = in_conv(h) | |
else: | |
h = self.in_layers(x) | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
while len(emb_out.shape) < len(h.shape): | |
emb_out = emb_out[..., None] | |
if self.use_scale_shift_norm: | |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
scale, shift = torch.chunk(emb_out, 2, dim=1) | |
h = out_norm(h) * (1 + scale) + shift | |
h = out_rest(h) | |
else: | |
h = h + emb_out | |
h = self.out_layers(h) | |
return self.skip_connection(x) + h | |
class AttentionBlock(nn.Module): | |
""" | |
An attention block that allows spatial positions to attend to each other. | |
Originally ported from here, but adapted to the N-d case. | |
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. | |
""" | |
def __init__( | |
self, | |
channels, | |
num_heads=1, | |
num_head_channels=-1, | |
use_checkpoint=False, | |
use_new_attention_order=False, | |
): | |
super().__init__() | |
self.channels = channels | |
if num_head_channels == -1: | |
self.num_heads = num_heads | |
else: | |
assert ( | |
channels % num_head_channels == 0 | |
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" | |
self.num_heads = channels // num_head_channels | |
self.use_checkpoint = use_checkpoint | |
self.norm = normalization(channels) | |
self.qkv = conv_nd(1, channels, channels * 3, 1) | |
if use_new_attention_order: | |
# split qkv before split heads | |
self.attention = QKVAttention(self.num_heads) | |
else: | |
# split heads before split qkv | |
self.attention = QKVAttentionLegacy(self.num_heads) | |
self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) | |
def forward(self, x): | |
return checkpoint( | |
self._forward, (x,), self.parameters(), True | |
) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!! | |
# return pt_checkpoint(self._forward, x) # pytorch | |
def _forward(self, x): | |
b, c, *spatial = x.shape | |
x = x.reshape(b, c, -1) | |
qkv = self.qkv(self.norm(x)) | |
h = self.attention(qkv) | |
h = self.proj_out(h) | |
return (x + h).reshape(b, c, *spatial) | |
class UNetModel(nn.Module): | |
""" | |
The full UNet model with attention and timestep embedding. | |
:param in_channels: channels in the input Tensor. | |
:param model_channels: base channel count for the model. | |
:param out_channels: channels in the output Tensor. | |
:param num_res_blocks: number of residual blocks per downsample. | |
:param attention_resolutions: a collection of downsample rates at which | |
attention will take place. May be a set, list, or tuple. | |
For example, if this contains 4, then at 4x downsampling, attention | |
will be used. | |
:param dropout: the dropout probability. | |
:param channel_mult: channel multiplier for each level of the UNet. | |
:param conv_resample: if True, use learned convolutions for upsampling and | |
downsampling. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param num_classes: if specified (as an int), then this model will be | |
class-conditional with `num_classes` classes. | |
:param use_checkpoint: use gradient checkpointing to reduce memory usage. | |
:param num_heads: the number of attention heads in each attention layer. | |
:param num_heads_channels: if specified, ignore num_heads and instead use | |
a fixed channel width per attention head. | |
:param num_heads_upsample: works with num_heads to set a different number | |
of heads for upsampling. Deprecated. | |
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism. | |
:param resblock_updown: use residual blocks for up/downsampling. | |
:param use_new_attention_order: use a different attention pattern for potentially | |
increased efficiency. | |
""" | |
def __init__( | |
self, | |
image_size, | |
in_channels, | |
model_channels, | |
out_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
num_classes=None, | |
use_checkpoint=False, | |
use_fp16=False, | |
num_heads=-1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
use_new_attention_order=False, | |
use_spatial_transformer=False, # custom transformer support | |
transformer_depth=1, # custom transformer support | |
context_dim=None, # custom transformer support | |
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model | |
legacy=True, | |
): | |
super().__init__() | |
if use_spatial_transformer: | |
assert ( | |
context_dim is not None | |
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..." | |
if context_dim is not None: | |
assert ( | |
use_spatial_transformer | |
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..." | |
from omegaconf.listconfig import ListConfig | |
if type(context_dim) == ListConfig: | |
context_dim = list(context_dim) | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
if num_heads == -1: | |
assert ( | |
num_head_channels != -1 | |
), "Either num_heads or num_head_channels has to be set" | |
if num_head_channels == -1: | |
assert ( | |
num_heads != -1 | |
), "Either num_heads or num_head_channels has to be set" | |
self.image_size = image_size | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.out_channels = out_channels | |
self.num_res_blocks = num_res_blocks | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.num_classes = num_classes | |
self.use_checkpoint = use_checkpoint | |
self.dtype = torch.float16 if use_fp16 else torch.float32 | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
self.predict_codebook_ids = n_embed is not None | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
nn.Linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
nn.Linear(time_embed_dim, time_embed_dim), | |
) | |
if self.num_classes is not None: | |
self.label_emb = nn.Embedding(num_classes, time_embed_dim) | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
) | |
] | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for _ in range(num_res_blocks): | |
layers = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ( | |
ch // num_heads | |
if use_spatial_transformer | |
else num_head_channels | |
) | |
layers.append( | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) | |
if not use_spatial_transformer | |
else SpatialTransformer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth, | |
context_dim=context_dim, | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True, | |
) | |
if resblock_updown | |
else Downsample( | |
ch, conv_resample, dims=dims, out_channels=out_ch | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
ds *= 2 | |
self._feature_size += ch | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
self.middle_block = TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
( | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) | |
if not use_spatial_transformer | |
else SpatialTransformer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth, | |
context_dim=context_dim, | |
) | |
), | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
) | |
self._feature_size += ch | |
self.output_blocks = nn.ModuleList([]) | |
for level, mult in list(enumerate(channel_mult))[::-1]: | |
for i in range(num_res_blocks + 1): | |
ich = input_block_chans.pop() | |
layers = [ | |
ResBlock( | |
ch + ich, | |
time_embed_dim, | |
dropout, | |
out_channels=model_channels * mult, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = model_channels * mult | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ( | |
ch // num_heads | |
if use_spatial_transformer | |
else num_head_channels | |
) | |
layers.append( | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads_upsample, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) | |
if not use_spatial_transformer | |
else SpatialTransformer( | |
ch, | |
num_heads, | |
dim_head, | |
depth=transformer_depth, | |
context_dim=context_dim, | |
) | |
) | |
if level and i == num_res_blocks: | |
out_ch = ch | |
layers.append( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
up=True, | |
) | |
if resblock_updown | |
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) | |
) | |
ds //= 2 | |
self.output_blocks.append(TimestepEmbedSequential(*layers)) | |
self._feature_size += ch | |
self.out = nn.Sequential( | |
normalization(ch), | |
nn.SiLU(), | |
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), | |
) | |
if self.predict_codebook_ids: | |
self.id_predictor = nn.Sequential( | |
normalization(ch), | |
conv_nd(dims, model_channels, n_embed, 1), | |
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits | |
) | |
def forward(self, x, timesteps=None, context=None, y=None, **kwargs): | |
""" | |
Apply the model to an input batch. | |
:param x: an [N x C x ...] Tensor of inputs. | |
:param timesteps: a 1-D batch of timesteps. | |
:param context: conditioning plugged in via crossattn | |
:param y: an [N] Tensor of labels, if class-conditional. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
assert (y is not None) == ( | |
self.num_classes is not None | |
), "must specify y if and only if the model is class-conditional" | |
hs = [] | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
if self.num_classes is not None: | |
assert y.shape == (x.shape[0],) | |
emb = emb + self.label_emb(y) | |
h = x.type(self.dtype) | |
for module in self.input_blocks: | |
h = module(h, emb, context) | |
hs.append(h) | |
h = self.middle_block(h, emb, context) | |
for module in self.output_blocks: | |
# print(h.shape, hs[-1].shape) | |
if h.shape != hs[-1].shape: | |
if h.shape[-1] > hs[-1].shape[-1]: | |
h = h[:, :, :, : hs[-1].shape[-1]] | |
if h.shape[-2] > hs[-1].shape[-2]: | |
h = h[:, :, : hs[-1].shape[-2], :] | |
h = torch.cat([h, hs.pop()], dim=1) | |
h = module(h, emb, context) | |
# print(h.shape) | |
h = h.type(x.dtype) | |
if self.predict_codebook_ids: | |
return self.id_predictor(h) | |
else: | |
return self.out(h) | |
class AudioLDM(nn.Module): | |
def __init__(self, cfg): | |
super().__init__() | |
self.cfg = cfg | |
self.unet = UNetModel( | |
image_size=cfg.image_size, | |
in_channels=cfg.in_channels, | |
out_channels=cfg.out_channels, | |
model_channels=cfg.model_channels, | |
attention_resolutions=cfg.attention_resolutions, | |
num_res_blocks=cfg.num_res_blocks, | |
channel_mult=cfg.channel_mult, | |
num_heads=cfg.num_heads, | |
use_spatial_transformer=cfg.use_spatial_transformer, | |
transformer_depth=cfg.transformer_depth, | |
context_dim=cfg.context_dim, | |
use_checkpoint=cfg.use_checkpoint, | |
legacy=cfg.legacy, | |
) | |
def forward(self, x, timesteps=None, context=None, y=None): | |
x = self.unet(x=x, timesteps=timesteps, context=context, y=y) | |
return x | |