Spaces:
Running
Running
# Copyright (c) 2024 Amphion. | |
# | |
# This code is modified from https://github.com/imdanboy/jets/blob/main/espnet2/gan_tts/jets/length_regulator.py | |
# Licensed under Apache License 2.0 | |
import torch | |
class GaussianUpsampling(torch.nn.Module): | |
""" | |
Gaussian upsampling with fixed temperature as in: | |
https://arxiv.org/abs/2010.04301 | |
""" | |
def __init__(self, delta=0.1): | |
super().__init__() | |
self.delta = delta | |
def forward(self, hs, ds, h_masks=None, d_masks=None): | |
""" | |
Args: | |
hs (Tensor): Batched hidden state to be expanded (B, T_text, adim) | |
ds (Tensor): Batched token duration (B, T_text) | |
h_masks (Tensor): Mask tensor (B,T_feats) | |
d_masks (Tensor): Mask tensor (B,T_text) | |
Returns: | |
Tensor: Expanded hidden state (B, T_feat, adim) | |
""" | |
B = ds.size(0) | |
device = ds.device | |
if h_masks is None: | |
T_feats = ds.sum().int() | |
else: | |
T_feats = h_masks.size(-1) | |
t = torch.arange(0, T_feats).unsqueeze(0).repeat(B, 1).to(device).float() | |
if h_masks is not None: | |
t = t * h_masks.float() | |
c = ds.cumsum(dim=-1) - ds / 2 | |
energy = -1 * self.delta * (t.unsqueeze(-1) - c.unsqueeze(1)) ** 2 | |
if d_masks is not None: | |
energy = energy.masked_fill( | |
~(d_masks.unsqueeze(1).repeat(1, T_feats, 1)), -float("inf") | |
) | |
p_attn = torch.softmax(energy, dim=2) # (B, T_feats, T_text) | |
hs = torch.matmul(p_attn, hs) | |
return hs | |