Spaces:
Running
Running
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
# 1. Extract WORLD features including F0, AP, SP | |
# 2. Transform between SP and MCEP | |
import torchaudio | |
import pyworld as pw | |
import numpy as np | |
import torch | |
import diffsptk | |
import os | |
from tqdm import tqdm | |
import pickle | |
import json | |
import re | |
import torchaudio | |
from cuhkszsvc.configs.config_parse import get_wav_path, get_wav_file_path | |
from utils.io import has_existed | |
def get_mcep_params(fs): | |
"""Hyperparameters of transformation between SP and MCEP | |
Reference: | |
https://github.com/CSTR-Edinburgh/merlin/blob/master/misc/scripts/vocoder/world_v2/copy_synthesis.sh | |
""" | |
if fs in [44100, 48000]: | |
fft_size = 2048 | |
alpha = 0.77 | |
if fs in [16000]: | |
fft_size = 1024 | |
alpha = 0.58 | |
return fft_size, alpha | |
def extract_world_features(wave_file, fs, frameshift): | |
# waveform: (1, seq) | |
waveform, sample_rate = torchaudio.load(wave_file) | |
if sample_rate != fs: | |
waveform = torchaudio.functional.resample( | |
waveform, orig_freq=sample_rate, new_freq=fs | |
) | |
# x: (seq,) | |
x = np.array(torch.clamp(waveform[0], -1.0, 1.0), dtype=np.double) | |
_f0, t = pw.dio(x, fs, frame_period=frameshift) # raw pitch extractor | |
f0 = pw.stonemask(x, _f0, t, fs) # pitch refinement | |
sp = pw.cheaptrick(x, f0, t, fs) # extract smoothed spectrogram | |
ap = pw.d4c(x, f0, t, fs) # extract aperiodicity | |
return f0, sp, ap, fs | |
def sp2mcep(x, mcsize, fs): | |
fft_size, alpha = get_mcep_params(fs) | |
x = torch.as_tensor(x, dtype=torch.float) | |
tmp = diffsptk.ScalarOperation("SquareRoot")(x) | |
tmp = diffsptk.ScalarOperation("Multiplication", 32768.0)(tmp) | |
mgc = diffsptk.MelCepstralAnalysis( | |
cep_order=mcsize - 1, fft_length=fft_size, alpha=alpha, n_iter=1 | |
)(tmp) | |
return mgc.numpy() | |
def mcep2sp(x, mcsize, fs): | |
fft_size, alpha = get_mcep_params(fs) | |
x = torch.as_tensor(x, dtype=torch.float) | |
tmp = diffsptk.MelGeneralizedCepstrumToSpectrum( | |
alpha=alpha, | |
cep_order=mcsize - 1, | |
fft_length=fft_size, | |
)(x) | |
tmp = diffsptk.ScalarOperation("Division", 32768.0)(tmp) | |
sp = diffsptk.ScalarOperation("Power", 2)(tmp) | |
return sp.double().numpy() | |
def extract_mcep_features_of_dataset( | |
output_path, dataset_path, dataset, mcsize, fs, frameshift, splits=None | |
): | |
output_dir = os.path.join(output_path, dataset, "mcep/{}".format(fs)) | |
if not splits: | |
splits = ["train", "test"] if dataset != "m4singer" else ["test"] | |
for dataset_type in splits: | |
print("-" * 20) | |
print("Dataset: {}, {}".format(dataset, dataset_type)) | |
output_file = os.path.join(output_dir, "{}.pkl".format(dataset_type)) | |
if has_existed(output_file): | |
continue | |
# Extract SP features | |
print("\nExtracting SP featuers...") | |
sp_features = get_world_features_of_dataset( | |
output_path, dataset_path, dataset, dataset_type, fs, frameshift | |
) | |
# SP to MCEP | |
print("\nTransform SP to MCEP...") | |
mcep_features = [sp2mcep(sp, mcsize=mcsize, fs=fs) for sp in tqdm(sp_features)] | |
# Save | |
os.makedirs(output_dir, exist_ok=True) | |
with open(output_file, "wb") as f: | |
pickle.dump(mcep_features, f) | |
def get_world_features_of_dataset( | |
output_path, | |
dataset_path, | |
dataset, | |
dataset_type, | |
fs, | |
frameshift, | |
save_sp_feature=False, | |
): | |
data_dir = os.path.join(output_path, dataset) | |
wave_dir = get_wav_path(dataset_path, dataset) | |
# Dataset | |
dataset_file = os.path.join(data_dir, "{}.json".format(dataset_type)) | |
if not os.path.exists(dataset_file): | |
print("File {} has not existed.".format(dataset_file)) | |
return None | |
with open(dataset_file, "r") as f: | |
datasets = json.load(f) | |
# Save dir | |
f0_dir = os.path.join(output_path, dataset, "f0") | |
os.makedirs(f0_dir, exist_ok=True) | |
# Extract | |
f0_features = [] | |
sp_features = [] | |
for utt in tqdm(datasets): | |
wave_file = get_wav_file_path(dataset, wave_dir, utt) | |
f0, sp, _, _ = extract_world_features(wave_file, fs, frameshift) | |
sp_features.append(sp) | |
f0_features.append(f0) | |
# Save sp | |
if save_sp_feature: | |
sp_dir = os.path.join(output_path, dataset, "sp") | |
os.makedirs(sp_dir, exist_ok=True) | |
with open(os.path.join(sp_dir, "{}.pkl".format(dataset_type)), "wb") as f: | |
pickle.dump(sp_features, f) | |
# F0 statistics | |
f0_statistics_file = os.path.join(f0_dir, "{}_f0.pkl".format(dataset_type)) | |
f0_statistics(f0_features, f0_statistics_file) | |
return sp_features | |
def f0_statistics(f0_features, path): | |
print("\nF0 statistics...") | |
total_f0 = [] | |
for f0 in tqdm(f0_features): | |
total_f0 += [f for f in f0 if f != 0] | |
mean = sum(total_f0) / len(total_f0) | |
print("Min = {}, Max = {}, Mean = {}".format(min(total_f0), max(total_f0), mean)) | |
with open(path, "wb") as f: | |
pickle.dump([mean, total_f0], f) | |
def world_synthesis(f0, sp, ap, fs, frameshift): | |
y = pw.synthesize( | |
f0, sp, ap, fs, frame_period=frameshift | |
) # synthesize an utterance using the parameters | |
return y | |