Spaces:
Running
Running
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
# This code is adopted from META's Encodec under MIT License | |
# https://github.com/facebookresearch/encodec | |
"""MS-STFT discriminator, provided here for reference.""" | |
import typing as tp | |
import torchaudio | |
import torch | |
from torch import nn | |
from einops import rearrange | |
from modules.vocoder_blocks import * | |
FeatureMapType = tp.List[torch.Tensor] | |
LogitsType = torch.Tensor | |
DiscriminatorOutput = tp.Tuple[tp.List[LogitsType], tp.List[FeatureMapType]] | |
def get_2d_padding( | |
kernel_size: tp.Tuple[int, int], dilation: tp.Tuple[int, int] = (1, 1) | |
): | |
return ( | |
((kernel_size[0] - 1) * dilation[0]) // 2, | |
((kernel_size[1] - 1) * dilation[1]) // 2, | |
) | |
class DiscriminatorSTFT(nn.Module): | |
"""STFT sub-discriminator. | |
Args: | |
filters (int): Number of filters in convolutions | |
in_channels (int): Number of input channels. Default: 1 | |
out_channels (int): Number of output channels. Default: 1 | |
n_fft (int): Size of FFT for each scale. Default: 1024 | |
hop_length (int): Length of hop between STFT windows for each scale. Default: 256 | |
kernel_size (tuple of int): Inner Conv2d kernel sizes. Default: ``(3, 9)`` | |
stride (tuple of int): Inner Conv2d strides. Default: ``(1, 2)`` | |
dilations (list of int): Inner Conv2d dilation on the time dimension. Default: ``[1, 2, 4]`` | |
win_length (int): Window size for each scale. Default: 1024 | |
normalized (bool): Whether to normalize by magnitude after stft. Default: True | |
norm (str): Normalization method. Default: `'weight_norm'` | |
activation (str): Activation function. Default: `'LeakyReLU'` | |
activation_params (dict): Parameters to provide to the activation function. | |
growth (int): Growth factor for the filters. Default: 1 | |
""" | |
def __init__( | |
self, | |
filters: int, | |
in_channels: int = 1, | |
out_channels: int = 1, | |
n_fft: int = 1024, | |
hop_length: int = 256, | |
win_length: int = 1024, | |
max_filters: int = 1024, | |
filters_scale: int = 1, | |
kernel_size: tp.Tuple[int, int] = (3, 9), | |
dilations: tp.List = [1, 2, 4], | |
stride: tp.Tuple[int, int] = (1, 2), | |
normalized: bool = True, | |
norm: str = "weight_norm", | |
activation: str = "LeakyReLU", | |
activation_params: dict = {"negative_slope": 0.2}, | |
): | |
super().__init__() | |
assert len(kernel_size) == 2 | |
assert len(stride) == 2 | |
self.filters = filters | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.n_fft = n_fft | |
self.hop_length = hop_length | |
self.win_length = win_length | |
self.normalized = normalized | |
self.activation = getattr(torch.nn, activation)(**activation_params) | |
self.spec_transform = torchaudio.transforms.Spectrogram( | |
n_fft=self.n_fft, | |
hop_length=self.hop_length, | |
win_length=self.win_length, | |
window_fn=torch.hann_window, | |
normalized=self.normalized, | |
center=False, | |
pad_mode=None, | |
power=None, | |
) | |
spec_channels = 2 * self.in_channels | |
self.convs = nn.ModuleList() | |
self.convs.append( | |
NormConv2d( | |
spec_channels, | |
self.filters, | |
kernel_size=kernel_size, | |
padding=get_2d_padding(kernel_size), | |
) | |
) | |
in_chs = min(filters_scale * self.filters, max_filters) | |
for i, dilation in enumerate(dilations): | |
out_chs = min((filters_scale ** (i + 1)) * self.filters, max_filters) | |
self.convs.append( | |
NormConv2d( | |
in_chs, | |
out_chs, | |
kernel_size=kernel_size, | |
stride=stride, | |
dilation=(dilation, 1), | |
padding=get_2d_padding(kernel_size, (dilation, 1)), | |
norm=norm, | |
) | |
) | |
in_chs = out_chs | |
out_chs = min( | |
(filters_scale ** (len(dilations) + 1)) * self.filters, max_filters | |
) | |
self.convs.append( | |
NormConv2d( | |
in_chs, | |
out_chs, | |
kernel_size=(kernel_size[0], kernel_size[0]), | |
padding=get_2d_padding((kernel_size[0], kernel_size[0])), | |
norm=norm, | |
) | |
) | |
self.conv_post = NormConv2d( | |
out_chs, | |
self.out_channels, | |
kernel_size=(kernel_size[0], kernel_size[0]), | |
padding=get_2d_padding((kernel_size[0], kernel_size[0])), | |
norm=norm, | |
) | |
def forward(self, x: torch.Tensor): | |
"""Discriminator STFT Module is the sub module of MultiScaleSTFTDiscriminator. | |
Args: | |
x (torch.Tensor): input tensor of shape [B, 1, Time] | |
Returns: | |
z: z is the output of the last convolutional layer of shape | |
fmap: fmap is the list of feature maps of every convolutional layer of shape | |
""" | |
fmap = [] | |
z = self.spec_transform(x) # [B, 2, Freq, Frames, 2] | |
z = torch.cat([z.real, z.imag], dim=1) | |
z = rearrange(z, "b c w t -> b c t w") | |
for i, layer in enumerate(self.convs): | |
z = layer(z) | |
z = self.activation(z) | |
fmap.append(z) | |
z = self.conv_post(z) | |
return z, fmap | |
class MultiScaleSTFTDiscriminator(nn.Module): | |
"""Multi-Scale STFT (MS-STFT) discriminator. | |
Args: | |
filters (int): Number of filters in convolutions | |
in_channels (int): Number of input channels. Default: 1 | |
out_channels (int): Number of output channels. Default: 1 | |
n_ffts (Sequence[int]): Size of FFT for each scale | |
hop_lengths (Sequence[int]): Length of hop between STFT windows for each scale | |
win_lengths (Sequence[int]): Window size for each scale | |
**kwargs: additional args for STFTDiscriminator | |
""" | |
def __init__( | |
self, | |
cfg, | |
in_channels: int = 1, | |
out_channels: int = 1, | |
n_ffts: tp.List[int] = [1024, 2048, 512], | |
hop_lengths: tp.List[int] = [256, 512, 256], | |
win_lengths: tp.List[int] = [1024, 2048, 512], | |
**kwargs, | |
): | |
self.cfg = cfg | |
super().__init__() | |
assert len(n_ffts) == len(hop_lengths) == len(win_lengths) | |
self.discriminators = nn.ModuleList( | |
[ | |
DiscriminatorSTFT( | |
filters=self.cfg.model.msstftd.filters, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
n_fft=n_ffts[i], | |
win_length=win_lengths[i], | |
hop_length=hop_lengths[i], | |
**kwargs, | |
) | |
for i in range(len(n_ffts)) | |
] | |
) | |
self.num_discriminators = len(self.discriminators) | |
def forward(self, y, y_hat) -> DiscriminatorOutput: | |
"""Multi-Scale STFT (MS-STFT) discriminator. | |
Args: | |
x (torch.Tensor): input waveform | |
Returns: | |
logits: list of every discriminator's output | |
fmaps: list of every discriminator's feature maps, | |
each feature maps is a list of Discriminator STFT's every layer | |
""" | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for disc in self.discriminators: | |
y_d_r, fmap_r = disc(y) | |
y_d_g, fmap_g = disc(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |