maskgct / models /vocoders /gan /gan_vocoder_trainer.py
Hecheng0625's picture
Upload 409 files
c968fc3 verified
raw
history blame
43.2 kB
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import sys
import time
import torch
import json
import itertools
import accelerate
import torch.distributed as dist
import torch.nn.functional as F
from tqdm import tqdm
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
from torch.optim import AdamW
from torch.optim.lr_scheduler import ExponentialLR
from librosa.filters import mel as librosa_mel_fn
from accelerate.logging import get_logger
from pathlib import Path
from utils.io import save_audio
from utils.data_utils import *
from utils.util import (
Logger,
ValueWindow,
remove_older_ckpt,
set_all_random_seed,
save_config,
)
from utils.mel import extract_mel_features
from models.vocoders.vocoder_trainer import VocoderTrainer
from models.vocoders.gan.gan_vocoder_dataset import (
GANVocoderDataset,
GANVocoderCollator,
)
from models.vocoders.gan.generator.bigvgan import BigVGAN
from models.vocoders.gan.generator.hifigan import HiFiGAN
from models.vocoders.gan.generator.melgan import MelGAN
from models.vocoders.gan.generator.nsfhifigan import NSFHiFiGAN
from models.vocoders.gan.generator.apnet import APNet
from models.vocoders.gan.discriminator.mpd import MultiPeriodDiscriminator
from models.vocoders.gan.discriminator.mrd import MultiResolutionDiscriminator
from models.vocoders.gan.discriminator.mssbcqtd import MultiScaleSubbandCQTDiscriminator
from models.vocoders.gan.discriminator.msd import MultiScaleDiscriminator
from models.vocoders.gan.discriminator.msstftd import MultiScaleSTFTDiscriminator
from models.vocoders.gan.gan_vocoder_inference import vocoder_inference
supported_generators = {
"bigvgan": BigVGAN,
"hifigan": HiFiGAN,
"melgan": MelGAN,
"nsfhifigan": NSFHiFiGAN,
"apnet": APNet,
}
supported_discriminators = {
"mpd": MultiPeriodDiscriminator,
"msd": MultiScaleDiscriminator,
"mrd": MultiResolutionDiscriminator,
"msstftd": MultiScaleSTFTDiscriminator,
"mssbcqtd": MultiScaleSubbandCQTDiscriminator,
}
class GANVocoderTrainer(VocoderTrainer):
def __init__(self, args, cfg):
super().__init__()
self.args = args
self.cfg = cfg
cfg.exp_name = args.exp_name
# Init accelerator
self._init_accelerator()
self.accelerator.wait_for_everyone()
# Init logger
with self.accelerator.main_process_first():
self.logger = get_logger(args.exp_name, log_level=args.log_level)
self.logger.info("=" * 56)
self.logger.info("||\t\t" + "New training process started." + "\t\t||")
self.logger.info("=" * 56)
self.logger.info("\n")
self.logger.debug(f"Using {args.log_level.upper()} logging level.")
self.logger.info(f"Experiment name: {args.exp_name}")
self.logger.info(f"Experiment directory: {self.exp_dir}")
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
if self.accelerator.is_main_process:
os.makedirs(self.checkpoint_dir, exist_ok=True)
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")
# Init training status
self.batch_count: int = 0
self.step: int = 0
self.epoch: int = 0
self.max_epoch = (
self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf")
)
self.logger.info(
"Max epoch: {}".format(
self.max_epoch if self.max_epoch < float("inf") else "Unlimited"
)
)
# Check potential erorrs
if self.accelerator.is_main_process:
self._check_basic_configs()
self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride
self.checkpoints_path = [
[] for _ in range(len(self.save_checkpoint_stride))
]
self.run_eval = self.cfg.train.run_eval
# Set random seed
with self.accelerator.main_process_first():
start = time.monotonic_ns()
self._set_random_seed(self.cfg.train.random_seed)
end = time.monotonic_ns()
self.logger.debug(
f"Setting random seed done in {(end - start) / 1e6:.2f}ms"
)
self.logger.debug(f"Random seed: {self.cfg.train.random_seed}")
# Build dataloader
with self.accelerator.main_process_first():
self.logger.info("Building dataset...")
start = time.monotonic_ns()
self.train_dataloader, self.valid_dataloader = self._build_dataloader()
end = time.monotonic_ns()
self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms")
# Build model
with self.accelerator.main_process_first():
self.logger.info("Building model...")
start = time.monotonic_ns()
self.generator, self.discriminators = self._build_model()
end = time.monotonic_ns()
self.logger.debug(self.generator)
for _, discriminator in self.discriminators.items():
self.logger.debug(discriminator)
self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms")
self.logger.info(f"Model parameters: {self._count_parameters()/1e6:.2f}M")
# Build optimizers and schedulers
with self.accelerator.main_process_first():
self.logger.info("Building optimizer and scheduler...")
start = time.monotonic_ns()
(
self.generator_optimizer,
self.discriminator_optimizer,
) = self._build_optimizer()
(
self.generator_scheduler,
self.discriminator_scheduler,
) = self._build_scheduler()
end = time.monotonic_ns()
self.logger.info(
f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms"
)
# Accelerator preparing
self.logger.info("Initializing accelerate...")
start = time.monotonic_ns()
(
self.train_dataloader,
self.valid_dataloader,
self.generator,
self.generator_optimizer,
self.discriminator_optimizer,
self.generator_scheduler,
self.discriminator_scheduler,
) = self.accelerator.prepare(
self.train_dataloader,
self.valid_dataloader,
self.generator,
self.generator_optimizer,
self.discriminator_optimizer,
self.generator_scheduler,
self.discriminator_scheduler,
)
for key, discriminator in self.discriminators.items():
self.discriminators[key] = self.accelerator.prepare_model(discriminator)
end = time.monotonic_ns()
self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms")
# Build criterions
with self.accelerator.main_process_first():
self.logger.info("Building criterion...")
start = time.monotonic_ns()
self.criterions = self._build_criterion()
end = time.monotonic_ns()
self.logger.info(f"Building criterion done in {(end - start) / 1e6:.2f}ms")
# Resume checkpoints
with self.accelerator.main_process_first():
if args.resume_type:
self.logger.info("Resuming from checkpoint...")
start = time.monotonic_ns()
ckpt_path = Path(args.checkpoint)
if self._is_valid_pattern(ckpt_path.parts[-1]):
ckpt_path = self._load_model(
None, args.checkpoint, args.resume_type
)
else:
ckpt_path = self._load_model(
args.checkpoint, resume_type=args.resume_type
)
end = time.monotonic_ns()
self.logger.info(
f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms"
)
self.checkpoints_path = json.load(
open(os.path.join(ckpt_path, "ckpts.json"), "r")
)
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
if self.accelerator.is_main_process:
os.makedirs(self.checkpoint_dir, exist_ok=True)
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")
# Save config
self.config_save_path = os.path.join(self.exp_dir, "args.json")
def _build_dataset(self):
return GANVocoderDataset, GANVocoderCollator
def _build_criterion(self):
class feature_criterion(torch.nn.Module):
def __init__(self, cfg):
super(feature_criterion, self).__init__()
self.cfg = cfg
self.l1Loss = torch.nn.L1Loss(reduction="mean")
self.l2Loss = torch.nn.MSELoss(reduction="mean")
self.relu = torch.nn.ReLU()
def __call__(self, fmap_r, fmap_g):
loss = 0
if self.cfg.model.generator in [
"hifigan",
"nsfhifigan",
"bigvgan",
"apnet",
]:
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss += torch.mean(torch.abs(rl - gl))
loss = loss * 2
elif self.cfg.model.generator in ["melgan"]:
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss += self.l1Loss(rl, gl)
loss = loss * 10
elif self.cfg.model.generator in ["codec"]:
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss = loss + self.l1Loss(rl, gl) / torch.mean(
torch.abs(rl)
)
KL_scale = len(fmap_r) * len(fmap_r[0])
loss = 3 * loss / KL_scale
else:
raise NotImplementedError
return loss
class discriminator_criterion(torch.nn.Module):
def __init__(self, cfg):
super(discriminator_criterion, self).__init__()
self.cfg = cfg
self.l1Loss = torch.nn.L1Loss(reduction="mean")
self.l2Loss = torch.nn.MSELoss(reduction="mean")
self.relu = torch.nn.ReLU()
def __call__(self, disc_real_outputs, disc_generated_outputs):
loss = 0
r_losses = []
g_losses = []
if self.cfg.model.generator in [
"hifigan",
"nsfhifigan",
"bigvgan",
"apnet",
]:
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean((1 - dr) ** 2)
g_loss = torch.mean(dg**2)
loss += r_loss + g_loss
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
elif self.cfg.model.generator in ["melgan"]:
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean(self.relu(1 - dr))
g_loss = torch.mean(self.relu(1 + dg))
loss = loss + r_loss + g_loss
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
elif self.cfg.model.generator in ["codec"]:
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean(self.relu(1 - dr))
g_loss = torch.mean(self.relu(1 + dg))
loss = loss + r_loss + g_loss
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
loss = loss / len(disc_real_outputs)
else:
raise NotImplementedError
return loss, r_losses, g_losses
class generator_criterion(torch.nn.Module):
def __init__(self, cfg):
super(generator_criterion, self).__init__()
self.cfg = cfg
self.l1Loss = torch.nn.L1Loss(reduction="mean")
self.l2Loss = torch.nn.MSELoss(reduction="mean")
self.relu = torch.nn.ReLU()
def __call__(self, disc_outputs):
loss = 0
gen_losses = []
if self.cfg.model.generator in [
"hifigan",
"nsfhifigan",
"bigvgan",
"apnet",
]:
for dg in disc_outputs:
l = torch.mean((1 - dg) ** 2)
gen_losses.append(l)
loss += l
elif self.cfg.model.generator in ["melgan"]:
for dg in disc_outputs:
l = -torch.mean(dg)
gen_losses.append(l)
loss += l
elif self.cfg.model.generator in ["codec"]:
for dg in disc_outputs:
l = torch.mean(self.relu(1 - dg)) / len(disc_outputs)
gen_losses.append(l)
loss += l
else:
raise NotImplementedError
return loss, gen_losses
class mel_criterion(torch.nn.Module):
def __init__(self, cfg):
super(mel_criterion, self).__init__()
self.cfg = cfg
self.l1Loss = torch.nn.L1Loss(reduction="mean")
self.l2Loss = torch.nn.MSELoss(reduction="mean")
self.relu = torch.nn.ReLU()
def __call__(self, y_gt, y_pred):
loss = 0
if self.cfg.model.generator in [
"hifigan",
"nsfhifigan",
"bigvgan",
"melgan",
"codec",
"apnet",
]:
y_gt_mel = extract_mel_features(y_gt, self.cfg.preprocess)
y_pred_mel = extract_mel_features(
y_pred.squeeze(1), self.cfg.preprocess
)
loss = self.l1Loss(y_gt_mel, y_pred_mel) * 45
else:
raise NotImplementedError
return loss
class wav_criterion(torch.nn.Module):
def __init__(self, cfg):
super(wav_criterion, self).__init__()
self.cfg = cfg
self.l1Loss = torch.nn.L1Loss(reduction="mean")
self.l2Loss = torch.nn.MSELoss(reduction="mean")
self.relu = torch.nn.ReLU()
def __call__(self, y_gt, y_pred):
loss = 0
if self.cfg.model.generator in [
"hifigan",
"nsfhifigan",
"bigvgan",
"apnet",
]:
loss = self.l2Loss(y_gt, y_pred.squeeze(1)) * 100
elif self.cfg.model.generator in ["melgan"]:
loss = self.l1Loss(y_gt, y_pred.squeeze(1)) / 10
elif self.cfg.model.generator in ["codec"]:
loss = self.l1Loss(y_gt, y_pred.squeeze(1)) + self.l2Loss(
y_gt, y_pred.squeeze(1)
)
loss /= 10
else:
raise NotImplementedError
return loss
class phase_criterion(torch.nn.Module):
def __init__(self, cfg):
super(phase_criterion, self).__init__()
self.cfg = cfg
self.l1Loss = torch.nn.L1Loss(reduction="mean")
self.l2Loss = torch.nn.MSELoss(reduction="mean")
self.relu = torch.nn.ReLU()
def __call__(self, phase_gt, phase_pred):
n_fft = self.cfg.preprocess.n_fft
frames = phase_gt.size()[-1]
GD_matrix = (
torch.triu(torch.ones(n_fft // 2 + 1, n_fft // 2 + 1), diagonal=1)
- torch.triu(torch.ones(n_fft // 2 + 1, n_fft // 2 + 1), diagonal=2)
- torch.eye(n_fft // 2 + 1)
)
GD_matrix = GD_matrix.to(phase_pred.device)
GD_r = torch.matmul(phase_gt.permute(0, 2, 1), GD_matrix)
GD_g = torch.matmul(phase_pred.permute(0, 2, 1), GD_matrix)
PTD_matrix = (
torch.triu(torch.ones(frames, frames), diagonal=1)
- torch.triu(torch.ones(frames, frames), diagonal=2)
- torch.eye(frames)
)
PTD_matrix = PTD_matrix.to(phase_pred.device)
PTD_r = torch.matmul(phase_gt, PTD_matrix)
PTD_g = torch.matmul(phase_pred, PTD_matrix)
IP_loss = torch.mean(-torch.cos(phase_gt - phase_pred))
GD_loss = torch.mean(-torch.cos(GD_r - GD_g))
PTD_loss = torch.mean(-torch.cos(PTD_r - PTD_g))
return 100 * (IP_loss + GD_loss + PTD_loss)
class amplitude_criterion(torch.nn.Module):
def __init__(self, cfg):
super(amplitude_criterion, self).__init__()
self.cfg = cfg
self.l1Loss = torch.nn.L1Loss(reduction="mean")
self.l2Loss = torch.nn.MSELoss(reduction="mean")
self.relu = torch.nn.ReLU()
def __call__(self, log_amplitude_gt, log_amplitude_pred):
amplitude_loss = self.l2Loss(log_amplitude_gt, log_amplitude_pred)
return 45 * amplitude_loss
class consistency_criterion(torch.nn.Module):
def __init__(self, cfg):
super(consistency_criterion, self).__init__()
self.cfg = cfg
self.l1Loss = torch.nn.L1Loss(reduction="mean")
self.l2Loss = torch.nn.MSELoss(reduction="mean")
self.relu = torch.nn.ReLU()
def __call__(
self,
rea_gt,
rea_pred,
rea_pred_final,
imag_gt,
imag_pred,
imag_pred_final,
):
C_loss = torch.mean(
torch.mean(
(rea_pred - rea_pred_final) ** 2
+ (imag_pred - imag_pred_final) ** 2,
(1, 2),
)
)
L_R = self.l1Loss(rea_gt, rea_pred)
L_I = self.l1Loss(imag_gt, imag_pred)
return 20 * (C_loss + 2.25 * (L_R + L_I))
criterions = dict()
for key in self.cfg.train.criterions:
if key == "feature":
criterions["feature"] = feature_criterion(self.cfg)
elif key == "discriminator":
criterions["discriminator"] = discriminator_criterion(self.cfg)
elif key == "generator":
criterions["generator"] = generator_criterion(self.cfg)
elif key == "mel":
criterions["mel"] = mel_criterion(self.cfg)
elif key == "wav":
criterions["wav"] = wav_criterion(self.cfg)
elif key == "phase":
criterions["phase"] = phase_criterion(self.cfg)
elif key == "amplitude":
criterions["amplitude"] = amplitude_criterion(self.cfg)
elif key == "consistency":
criterions["consistency"] = consistency_criterion(self.cfg)
else:
raise NotImplementedError
return criterions
def _build_model(self):
generator = supported_generators[self.cfg.model.generator](self.cfg)
discriminators = dict()
for key in self.cfg.model.discriminators:
discriminators[key] = supported_discriminators[key](self.cfg)
return generator, discriminators
def _build_optimizer(self):
optimizer_params_generator = [dict(params=self.generator.parameters())]
generator_optimizer = AdamW(
optimizer_params_generator,
lr=self.cfg.train.adamw.lr,
betas=(self.cfg.train.adamw.adam_b1, self.cfg.train.adamw.adam_b2),
)
optimizer_params_discriminator = []
for discriminator in self.discriminators.keys():
optimizer_params_discriminator.append(
dict(params=self.discriminators[discriminator].parameters())
)
discriminator_optimizer = AdamW(
optimizer_params_discriminator,
lr=self.cfg.train.adamw.lr,
betas=(self.cfg.train.adamw.adam_b1, self.cfg.train.adamw.adam_b2),
)
return generator_optimizer, discriminator_optimizer
def _build_scheduler(self):
discriminator_scheduler = ExponentialLR(
self.discriminator_optimizer,
gamma=self.cfg.train.exponential_lr.lr_decay,
last_epoch=self.epoch - 1,
)
generator_scheduler = ExponentialLR(
self.generator_optimizer,
gamma=self.cfg.train.exponential_lr.lr_decay,
last_epoch=self.epoch - 1,
)
return generator_scheduler, discriminator_scheduler
def train_loop(self):
"""Training process"""
self.accelerator.wait_for_everyone()
# Dump config
if self.accelerator.is_main_process:
self._dump_cfg(self.config_save_path)
self.generator.train()
for key in self.discriminators.keys():
self.discriminators[key].train()
self.generator_optimizer.zero_grad()
self.discriminator_optimizer.zero_grad()
# Sync and start training
self.accelerator.wait_for_everyone()
while self.epoch < self.max_epoch:
self.logger.info("\n")
self.logger.info("-" * 32)
self.logger.info("Epoch {}: ".format(self.epoch))
# Train and Validate
train_total_loss, train_losses = self._train_epoch()
for key, loss in train_losses.items():
self.logger.info(" |- Train/{} Loss: {:.6f}".format(key, loss))
self.accelerator.log(
{"Epoch/Train {} Loss".format(key): loss},
step=self.epoch,
)
valid_total_loss, valid_losses = self._valid_epoch()
for key, loss in valid_losses.items():
self.logger.info(" |- Valid/{} Loss: {:.6f}".format(key, loss))
self.accelerator.log(
{"Epoch/Valid {} Loss".format(key): loss},
step=self.epoch,
)
self.accelerator.log(
{
"Epoch/Train Total Loss": train_total_loss,
"Epoch/Valid Total Loss": valid_total_loss,
},
step=self.epoch,
)
# Update scheduler
self.accelerator.wait_for_everyone()
self.generator_scheduler.step()
self.discriminator_scheduler.step()
# Check save checkpoint interval
run_eval = False
if self.accelerator.is_main_process:
save_checkpoint = False
for i, num in enumerate(self.save_checkpoint_stride):
if self.epoch % num == 0:
save_checkpoint = True
run_eval |= self.run_eval[i]
# Save checkpoints
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process and save_checkpoint:
path = os.path.join(
self.checkpoint_dir,
"epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
self.epoch, self.step, valid_total_loss
),
)
self.accelerator.save_state(path)
json.dump(
self.checkpoints_path,
open(os.path.join(path, "ckpts.json"), "w"),
ensure_ascii=False,
indent=4,
)
# Save eval audios
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process and run_eval:
for i in range(len(self.valid_dataloader.dataset.eval_audios)):
if self.cfg.preprocess.use_frame_pitch:
eval_audio = self._inference(
self.valid_dataloader.dataset.eval_mels[i],
eval_pitch=self.valid_dataloader.dataset.eval_pitchs[i],
use_pitch=True,
)
else:
eval_audio = self._inference(
self.valid_dataloader.dataset.eval_mels[i]
)
path = os.path.join(
self.checkpoint_dir,
"epoch-{:04d}_step-{:07d}_loss-{:.6f}_eval_audio_{}.wav".format(
self.epoch,
self.step,
valid_total_loss,
self.valid_dataloader.dataset.eval_dataset_names[i],
),
)
path_gt = os.path.join(
self.checkpoint_dir,
"epoch-{:04d}_step-{:07d}_loss-{:.6f}_eval_audio_{}_gt.wav".format(
self.epoch,
self.step,
valid_total_loss,
self.valid_dataloader.dataset.eval_dataset_names[i],
),
)
save_audio(path, eval_audio, self.cfg.preprocess.sample_rate)
save_audio(
path_gt,
self.valid_dataloader.dataset.eval_audios[i],
self.cfg.preprocess.sample_rate,
)
self.accelerator.wait_for_everyone()
self.epoch += 1
# Finish training
self.accelerator.wait_for_everyone()
path = os.path.join(
self.checkpoint_dir,
"epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
self.epoch, self.step, valid_total_loss
),
)
self.accelerator.save_state(path)
def _train_epoch(self):
"""Training epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
self.generator.train()
for key, _ in self.discriminators.items():
self.discriminators[key].train()
epoch_losses: dict = {}
epoch_total_loss: int = 0
for batch in tqdm(
self.train_dataloader,
desc=f"Training Epoch {self.epoch}",
unit="batch",
colour="GREEN",
leave=False,
dynamic_ncols=True,
smoothing=0.04,
disable=not self.accelerator.is_main_process,
):
# Get losses
total_loss, losses = self._train_step(batch)
self.batch_count += 1
# Log info
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
self.accelerator.log(
{
"Step/Generator Learning Rate": self.generator_optimizer.param_groups[
0
][
"lr"
],
"Step/Discriminator Learning Rate": self.discriminator_optimizer.param_groups[
0
][
"lr"
],
},
step=self.step,
)
for key, _ in losses.items():
self.accelerator.log(
{
"Step/Train {} Loss".format(key): losses[key],
},
step=self.step,
)
if not epoch_losses:
epoch_losses = losses
else:
for key, value in losses.items():
epoch_losses[key] += value
epoch_total_loss += total_loss
self.step += 1
# Get and log total losses
self.accelerator.wait_for_everyone()
epoch_total_loss = (
epoch_total_loss
/ len(self.train_dataloader)
* self.cfg.train.gradient_accumulation_step
)
for key in epoch_losses.keys():
epoch_losses[key] = (
epoch_losses[key]
/ len(self.train_dataloader)
* self.cfg.train.gradient_accumulation_step
)
return epoch_total_loss, epoch_losses
def _train_step(self, data):
"""Training forward step. Should return average loss of a sample over
one batch. Provoke ``_forward_step`` is recommended except for special case.
See ``_train_epoch`` for usage.
"""
# Init losses
train_losses = {}
total_loss = 0
generator_losses = {}
generator_total_loss = 0
discriminator_losses = {}
discriminator_total_loss = 0
# Use input feature to get predictions
mel_input = data["mel"]
audio_gt = data["audio"]
if self.cfg.preprocess.extract_amplitude_phase:
logamp_gt = data["logamp"]
pha_gt = data["pha"]
rea_gt = data["rea"]
imag_gt = data["imag"]
if self.cfg.preprocess.use_frame_pitch:
pitch_input = data["frame_pitch"]
if self.cfg.preprocess.use_frame_pitch:
pitch_input = pitch_input.float()
audio_pred = self.generator.forward(mel_input, pitch_input)
elif self.cfg.preprocess.extract_amplitude_phase:
(
logamp_pred,
pha_pred,
rea_pred,
imag_pred,
audio_pred,
) = self.generator.forward(mel_input)
from utils.mel import amplitude_phase_spectrum
_, _, rea_pred_final, imag_pred_final = amplitude_phase_spectrum(
audio_pred.squeeze(1), self.cfg.preprocess
)
else:
audio_pred = self.generator.forward(mel_input)
# Calculate and BP Discriminator losses
self.discriminator_optimizer.zero_grad()
for key, _ in self.discriminators.items():
y_r, y_g, _, _ = self.discriminators[key].forward(
audio_gt.unsqueeze(1), audio_pred.detach()
)
(
discriminator_losses["{}_discriminator".format(key)],
_,
_,
) = self.criterions["discriminator"](y_r, y_g)
discriminator_total_loss += discriminator_losses[
"{}_discriminator".format(key)
]
self.accelerator.backward(discriminator_total_loss)
self.discriminator_optimizer.step()
# Calculate and BP Generator losses
self.generator_optimizer.zero_grad()
for key, _ in self.discriminators.items():
y_r, y_g, f_r, f_g = self.discriminators[key].forward(
audio_gt.unsqueeze(1), audio_pred
)
generator_losses["{}_feature".format(key)] = self.criterions["feature"](
f_r, f_g
)
generator_losses["{}_generator".format(key)], _ = self.criterions[
"generator"
](y_g)
generator_total_loss += generator_losses["{}_feature".format(key)]
generator_total_loss += generator_losses["{}_generator".format(key)]
if "mel" in self.criterions.keys():
generator_losses["mel"] = self.criterions["mel"](audio_gt, audio_pred)
generator_total_loss += generator_losses["mel"]
if "wav" in self.criterions.keys():
generator_losses["wav"] = self.criterions["wav"](audio_gt, audio_pred)
generator_total_loss += generator_losses["wav"]
if "amplitude" in self.criterions.keys():
generator_losses["amplitude"] = self.criterions["amplitude"](
logamp_gt, logamp_pred
)
generator_total_loss += generator_losses["amplitude"]
if "phase" in self.criterions.keys():
generator_losses["phase"] = self.criterions["phase"](pha_gt, pha_pred)
generator_total_loss += generator_losses["phase"]
if "consistency" in self.criterions.keys():
generator_losses["consistency"] = self.criterions["consistency"](
rea_gt, rea_pred, rea_pred_final, imag_gt, imag_pred, imag_pred_final
)
generator_total_loss += generator_losses["consistency"]
self.accelerator.backward(generator_total_loss)
self.generator_optimizer.step()
# Get the total losses
total_loss = discriminator_total_loss + generator_total_loss
train_losses.update(discriminator_losses)
train_losses.update(generator_losses)
for key, _ in train_losses.items():
train_losses[key] = train_losses[key].item()
return total_loss.item(), train_losses
def _valid_epoch(self):
"""Testing epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
self.generator.eval()
for key, _ in self.discriminators.items():
self.discriminators[key].eval()
epoch_losses: dict = {}
epoch_total_loss: int = 0
for batch in tqdm(
self.valid_dataloader,
desc=f"Validating Epoch {self.epoch}",
unit="batch",
colour="GREEN",
leave=False,
dynamic_ncols=True,
smoothing=0.04,
disable=not self.accelerator.is_main_process,
):
# Get losses
total_loss, losses = self._valid_step(batch)
# Log info
for key, _ in losses.items():
self.accelerator.log(
{
"Step/Valid {} Loss".format(key): losses[key],
},
step=self.step,
)
if not epoch_losses:
epoch_losses = losses
else:
for key, value in losses.items():
epoch_losses[key] += value
epoch_total_loss += total_loss
# Get and log total losses
self.accelerator.wait_for_everyone()
epoch_total_loss = epoch_total_loss / len(self.valid_dataloader)
for key in epoch_losses.keys():
epoch_losses[key] = epoch_losses[key] / len(self.valid_dataloader)
return epoch_total_loss, epoch_losses
def _valid_step(self, data):
"""Testing forward step. Should return average loss of a sample over
one batch. Provoke ``_forward_step`` is recommended except for special case.
See ``_test_epoch`` for usage.
"""
# Init losses
valid_losses = {}
total_loss = 0
generator_losses = {}
generator_total_loss = 0
discriminator_losses = {}
discriminator_total_loss = 0
# Use feature inputs to get the predicted audio
mel_input = data["mel"]
audio_gt = data["audio"]
if self.cfg.preprocess.extract_amplitude_phase:
logamp_gt = data["logamp"]
pha_gt = data["pha"]
rea_gt = data["rea"]
imag_gt = data["imag"]
if self.cfg.preprocess.use_frame_pitch:
pitch_input = data["frame_pitch"]
if self.cfg.preprocess.use_frame_pitch:
pitch_input = pitch_input.float()
audio_pred = self.generator.forward(mel_input, pitch_input)
elif self.cfg.preprocess.extract_amplitude_phase:
(
logamp_pred,
pha_pred,
rea_pred,
imag_pred,
audio_pred,
) = self.generator.forward(mel_input)
from utils.mel import amplitude_phase_spectrum
_, _, rea_pred_final, imag_pred_final = amplitude_phase_spectrum(
audio_pred.squeeze(1), self.cfg.preprocess
)
else:
audio_pred = self.generator.forward(mel_input)
# Get Discriminator losses
for key, _ in self.discriminators.items():
y_r, y_g, _, _ = self.discriminators[key].forward(
audio_gt.unsqueeze(1), audio_pred
)
(
discriminator_losses["{}_discriminator".format(key)],
_,
_,
) = self.criterions["discriminator"](y_r, y_g)
discriminator_total_loss += discriminator_losses[
"{}_discriminator".format(key)
]
for key, _ in self.discriminators.items():
y_r, y_g, f_r, f_g = self.discriminators[key].forward(
audio_gt.unsqueeze(1), audio_pred
)
generator_losses["{}_feature".format(key)] = self.criterions["feature"](
f_r, f_g
)
generator_losses["{}_generator".format(key)], _ = self.criterions[
"generator"
](y_g)
generator_total_loss += generator_losses["{}_feature".format(key)]
generator_total_loss += generator_losses["{}_generator".format(key)]
if "mel" in self.criterions.keys():
generator_losses["mel"] = self.criterions["mel"](audio_gt, audio_pred)
generator_total_loss += generator_losses["mel"]
if "mel" in self.criterions.keys():
generator_losses["mel"] = self.criterions["mel"](audio_gt, audio_pred)
generator_total_loss += generator_losses["mel"]
if "wav" in self.criterions.keys():
generator_losses["wav"] = self.criterions["wav"](audio_gt, audio_pred)
generator_total_loss += generator_losses["wav"]
if "wav" in self.criterions.keys():
generator_losses["wav"] = self.criterions["wav"](audio_gt, audio_pred)
generator_total_loss += generator_losses["wav"]
if "amplitude" in self.criterions.keys():
generator_losses["amplitude"] = self.criterions["amplitude"](
logamp_gt, logamp_pred
)
generator_total_loss += generator_losses["amplitude"]
if "phase" in self.criterions.keys():
generator_losses["phase"] = self.criterions["phase"](pha_gt, pha_pred)
generator_total_loss += generator_losses["phase"]
if "consistency" in self.criterions.keys():
generator_losses["consistency"] = self.criterions["consistency"](
rea_gt,
rea_pred,
rea_pred_final,
imag_gt,
imag_pred,
imag_pred_final,
)
generator_total_loss += generator_losses["consistency"]
total_loss = discriminator_total_loss + generator_total_loss
valid_losses.update(discriminator_losses)
valid_losses.update(generator_losses)
for item in valid_losses:
valid_losses[item] = valid_losses[item].item()
return total_loss.item(), valid_losses
def _inference(self, eval_mel, eval_pitch=None, use_pitch=False):
"""Inference during training for test audios."""
if use_pitch:
eval_pitch = align_length(eval_pitch, eval_mel.shape[1])
eval_audio = vocoder_inference(
self.cfg,
self.generator,
torch.from_numpy(eval_mel).unsqueeze(0),
f0s=torch.from_numpy(eval_pitch).unsqueeze(0).float(),
device=next(self.generator.parameters()).device,
).squeeze(0)
else:
eval_audio = vocoder_inference(
self.cfg,
self.generator,
torch.from_numpy(eval_mel).unsqueeze(0),
device=next(self.generator.parameters()).device,
).squeeze(0)
return eval_audio
def _load_model(self, checkpoint_dir, checkpoint_path=None, resume_type="resume"):
"""Load model from checkpoint. If checkpoint_path is None, it will
load the latest checkpoint in checkpoint_dir. If checkpoint_path is not
None, it will load the checkpoint specified by checkpoint_path. **Only use this
method after** ``accelerator.prepare()``.
"""
if checkpoint_path is None:
ls = [str(i) for i in Path(checkpoint_dir).glob("*")]
ls.sort(key=lambda x: int(x.split("_")[-3].split("-")[-1]), reverse=True)
checkpoint_path = ls[0]
if resume_type == "resume":
self.accelerator.load_state(checkpoint_path)
self.epoch = int(checkpoint_path.split("_")[-3].split("-")[-1]) + 1
self.step = int(checkpoint_path.split("_")[-2].split("-")[-1]) + 1
elif resume_type == "finetune":
accelerate.load_checkpoint_and_dispatch(
self.accelerator.unwrap_model(self.generator),
os.path.join(checkpoint_path, "pytorch_model.bin"),
)
for key, _ in self.discriminators.items():
accelerate.load_checkpoint_and_dispatch(
self.accelerator.unwrap_model(self.discriminators[key]),
os.path.join(checkpoint_path, "pytorch_model.bin"),
)
self.logger.info("Load model weights for finetune SUCCESS!")
else:
raise ValueError("Unsupported resume type: {}".format(resume_type))
return checkpoint_path
def _count_parameters(self):
result = sum(p.numel() for p in self.generator.parameters())
for _, discriminator in self.discriminators.items():
result += sum(p.numel() for p in discriminator.parameters())
return result