Spaces:
Running
Running
# Copyright (c) 2024 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Optional, Tuple | |
import numpy as np | |
import scipy | |
import torch | |
from torch import nn, view_as_real, view_as_complex | |
from torch import nn | |
from torch.nn.utils import weight_norm, remove_weight_norm | |
from torchaudio.functional.functional import _hz_to_mel, _mel_to_hz | |
import librosa | |
def safe_log(x: torch.Tensor, clip_val: float = 1e-7) -> torch.Tensor: | |
""" | |
Computes the element-wise logarithm of the input tensor with clipping to avoid near-zero values. | |
Args: | |
x (Tensor): Input tensor. | |
clip_val (float, optional): Minimum value to clip the input tensor. Defaults to 1e-7. | |
Returns: | |
Tensor: Element-wise logarithm of the input tensor with clipping applied. | |
""" | |
return torch.log(torch.clip(x, min=clip_val)) | |
def symlog(x: torch.Tensor) -> torch.Tensor: | |
return torch.sign(x) * torch.log1p(x.abs()) | |
def symexp(x: torch.Tensor) -> torch.Tensor: | |
return torch.sign(x) * (torch.exp(x.abs()) - 1) | |
class STFT(nn.Module): | |
def __init__( | |
self, | |
n_fft: int, | |
hop_length: int, | |
win_length: int, | |
center=True, | |
): | |
super().__init__() | |
self.center = center | |
self.n_fft = n_fft | |
self.hop_length = hop_length | |
self.win_length = win_length | |
window = torch.hann_window(win_length) | |
self.register_buffer("window", window) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
# x: (B, T * hop_length) | |
if not self.center: | |
pad = self.win_length - self.hop_length | |
x = torch.nn.functional.pad(x, (pad // 2, pad // 2), mode="reflect") | |
stft_spec = torch.stft( | |
x, | |
self.n_fft, | |
hop_length=self.hop_length, | |
win_length=self.win_length, | |
window=self.window, | |
center=self.center, | |
return_complex=False, | |
) # (B, n_fft // 2 + 1, T, 2) | |
rea = stft_spec[:, :, :, 0] # (B, n_fft // 2 + 1, T, 2) | |
imag = stft_spec[:, :, :, 1] # (B, n_fft // 2 + 1, T, 2) | |
log_mag = torch.log( | |
torch.abs(torch.sqrt(torch.pow(rea, 2) + torch.pow(imag, 2))) + 1e-5 | |
) # (B, n_fft // 2 + 1, T) | |
phase = torch.atan2(imag, rea) # (B, n_fft // 2 + 1, T) | |
return log_mag, phase | |
class ISTFT(nn.Module): | |
""" | |
Custom implementation of ISTFT since torch.istft doesn't allow custom padding (other than `center=True`) with | |
windowing. This is because the NOLA (Nonzero Overlap Add) check fails at the edges. | |
See issue: https://github.com/pytorch/pytorch/issues/62323 | |
Specifically, in the context of neural vocoding we are interested in "same" padding analogous to CNNs. | |
The NOLA constraint is met as we trim padded samples anyway. | |
Args: | |
n_fft (int): Size of Fourier transform. | |
hop_length (int): The distance between neighboring sliding window frames. | |
win_length (int): The size of window frame and STFT filter. | |
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". | |
""" | |
def __init__( | |
self, n_fft: int, hop_length: int, win_length: int, padding: str = "same" | |
): | |
super().__init__() | |
if padding not in ["center", "same"]: | |
raise ValueError("Padding must be 'center' or 'same'.") | |
self.padding = padding | |
self.n_fft = n_fft | |
self.hop_length = hop_length | |
self.win_length = win_length | |
window = torch.hann_window(win_length) | |
self.register_buffer("window", window) | |
def forward(self, spec: torch.Tensor) -> torch.Tensor: | |
""" | |
Compute the Inverse Short Time Fourier Transform (ISTFT) of a complex spectrogram. | |
Args: | |
spec (Tensor): Input complex spectrogram of shape (B, N, T), where B is the batch size, | |
N is the number of frequency bins, and T is the number of time frames. | |
Returns: | |
Tensor: Reconstructed time-domain signal of shape (B, L), where L is the length of the output signal. | |
""" | |
if self.padding == "center": | |
# Fallback to pytorch native implementation | |
return torch.istft( | |
spec, | |
self.n_fft, | |
self.hop_length, | |
self.win_length, | |
self.window, | |
center=True, | |
) | |
elif self.padding == "same": | |
pad = (self.win_length - self.hop_length) // 2 | |
else: | |
raise ValueError("Padding must be 'center' or 'same'.") | |
assert spec.dim() == 3, "Expected a 3D tensor as input" | |
B, N, T = spec.shape | |
# Inverse FFT | |
ifft = torch.fft.irfft(spec, self.n_fft, dim=1, norm="backward") | |
ifft = ifft * self.window[None, :, None] | |
# Overlap and Add | |
output_size = (T - 1) * self.hop_length + self.win_length | |
y = torch.nn.functional.fold( | |
ifft, | |
output_size=(1, output_size), | |
kernel_size=(1, self.win_length), | |
stride=(1, self.hop_length), | |
)[:, 0, 0, pad:-pad] | |
# Window envelope | |
window_sq = self.window.square().expand(1, T, -1).transpose(1, 2) | |
window_envelope = torch.nn.functional.fold( | |
window_sq, | |
output_size=(1, output_size), | |
kernel_size=(1, self.win_length), | |
stride=(1, self.hop_length), | |
).squeeze()[pad:-pad] | |
# Normalize | |
assert (window_envelope > 1e-11).all() | |
y = y / window_envelope | |
return y | |
class MDCT(nn.Module): | |
""" | |
Modified Discrete Cosine Transform (MDCT) module. | |
Args: | |
frame_len (int): Length of the MDCT frame. | |
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". | |
""" | |
def __init__(self, frame_len: int, padding: str = "same"): | |
super().__init__() | |
if padding not in ["center", "same"]: | |
raise ValueError("Padding must be 'center' or 'same'.") | |
self.padding = padding | |
self.frame_len = frame_len | |
N = frame_len // 2 | |
n0 = (N + 1) / 2 | |
window = torch.from_numpy(scipy.signal.cosine(frame_len)).float() | |
self.register_buffer("window", window) | |
pre_twiddle = torch.exp(-1j * torch.pi * torch.arange(frame_len) / frame_len) | |
post_twiddle = torch.exp(-1j * torch.pi * n0 * (torch.arange(N) + 0.5) / N) | |
# view_as_real: NCCL Backend does not support ComplexFloat data type | |
# https://github.com/pytorch/pytorch/issues/71613 | |
self.register_buffer("pre_twiddle", view_as_real(pre_twiddle)) | |
self.register_buffer("post_twiddle", view_as_real(post_twiddle)) | |
def forward(self, audio: torch.Tensor) -> torch.Tensor: | |
""" | |
Apply the Modified Discrete Cosine Transform (MDCT) to the input audio. | |
Args: | |
audio (Tensor): Input audio waveform of shape (B, T), where B is the batch size | |
and T is the length of the audio. | |
Returns: | |
Tensor: MDCT coefficients of shape (B, L, N), where L is the number of output frames | |
and N is the number of frequency bins. | |
""" | |
if self.padding == "center": | |
audio = torch.nn.functional.pad( | |
audio, (self.frame_len // 2, self.frame_len // 2) | |
) | |
elif self.padding == "same": | |
# hop_length is 1/2 frame_len | |
audio = torch.nn.functional.pad( | |
audio, (self.frame_len // 4, self.frame_len // 4) | |
) | |
else: | |
raise ValueError("Padding must be 'center' or 'same'.") | |
x = audio.unfold(-1, self.frame_len, self.frame_len // 2) | |
N = self.frame_len // 2 | |
x = x * self.window.expand(x.shape) | |
X = torch.fft.fft( | |
x * view_as_complex(self.pre_twiddle).expand(x.shape), dim=-1 | |
)[..., :N] | |
res = X * view_as_complex(self.post_twiddle).expand(X.shape) * np.sqrt(1 / N) | |
return torch.real(res) * np.sqrt(2) | |
class IMDCT(nn.Module): | |
""" | |
Inverse Modified Discrete Cosine Transform (IMDCT) module. | |
Args: | |
frame_len (int): Length of the MDCT frame. | |
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". | |
""" | |
def __init__(self, frame_len: int, padding: str = "same"): | |
super().__init__() | |
if padding not in ["center", "same"]: | |
raise ValueError("Padding must be 'center' or 'same'.") | |
self.padding = padding | |
self.frame_len = frame_len | |
N = frame_len // 2 | |
n0 = (N + 1) / 2 | |
window = torch.from_numpy(scipy.signal.cosine(frame_len)).float() | |
self.register_buffer("window", window) | |
pre_twiddle = torch.exp(1j * torch.pi * n0 * torch.arange(N * 2) / N) | |
post_twiddle = torch.exp(1j * torch.pi * (torch.arange(N * 2) + n0) / (N * 2)) | |
self.register_buffer("pre_twiddle", view_as_real(pre_twiddle)) | |
self.register_buffer("post_twiddle", view_as_real(post_twiddle)) | |
def forward(self, X: torch.Tensor) -> torch.Tensor: | |
""" | |
Apply the Inverse Modified Discrete Cosine Transform (IMDCT) to the input MDCT coefficients. | |
Args: | |
X (Tensor): Input MDCT coefficients of shape (B, L, N), where B is the batch size, | |
L is the number of frames, and N is the number of frequency bins. | |
Returns: | |
Tensor: Reconstructed audio waveform of shape (B, T), where T is the length of the audio. | |
""" | |
B, L, N = X.shape | |
Y = torch.zeros((B, L, N * 2), dtype=X.dtype, device=X.device) | |
Y[..., :N] = X | |
Y[..., N:] = -1 * torch.conj(torch.flip(X, dims=(-1,))) | |
y = torch.fft.ifft( | |
Y * view_as_complex(self.pre_twiddle).expand(Y.shape), dim=-1 | |
) | |
y = ( | |
torch.real(y * view_as_complex(self.post_twiddle).expand(y.shape)) | |
* np.sqrt(N) | |
* np.sqrt(2) | |
) | |
result = y * self.window.expand(y.shape) | |
output_size = (1, (L + 1) * N) | |
audio = torch.nn.functional.fold( | |
result.transpose(1, 2), | |
output_size=output_size, | |
kernel_size=(1, self.frame_len), | |
stride=(1, self.frame_len // 2), | |
)[:, 0, 0, :] | |
if self.padding == "center": | |
pad = self.frame_len // 2 | |
elif self.padding == "same": | |
pad = self.frame_len // 4 | |
else: | |
raise ValueError("Padding must be 'center' or 'same'.") | |
audio = audio[:, pad:-pad] | |
return audio | |
class FourierHead(nn.Module): | |
"""Base class for inverse fourier modules.""" | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Args: | |
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size, | |
L is the sequence length, and H denotes the model dimension. | |
Returns: | |
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal. | |
""" | |
raise NotImplementedError("Subclasses must implement the forward method.") | |
class ISTFTHead(FourierHead): | |
""" | |
ISTFT Head module for predicting STFT complex coefficients. | |
Args: | |
dim (int): Hidden dimension of the model. | |
n_fft (int): Size of Fourier transform. | |
hop_length (int): The distance between neighboring sliding window frames, which should align with | |
the resolution of the input features. | |
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". | |
""" | |
def __init__(self, dim: int, n_fft: int, hop_length: int, padding: str = "same"): | |
super().__init__() | |
out_dim = n_fft + 2 | |
self.out = torch.nn.Linear(dim, out_dim) | |
self.istft = ISTFT( | |
n_fft=n_fft, hop_length=hop_length, win_length=n_fft, padding=padding | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Forward pass of the ISTFTHead module. | |
Args: | |
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size, | |
L is the sequence length, and H denotes the model dimension. | |
Returns: | |
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal. | |
""" | |
x = self.out(x).transpose(1, 2) | |
mag, p = x.chunk(2, dim=1) | |
mag = torch.exp(mag) | |
mag = torch.clip( | |
mag, max=1e2 | |
) # safeguard to prevent excessively large magnitudes | |
# wrapping happens here. These two lines produce real and imaginary value | |
x = torch.cos(p) | |
y = torch.sin(p) | |
# recalculating phase here does not produce anything new | |
# only costs time | |
# phase = torch.atan2(y, x) | |
# S = mag * torch.exp(phase * 1j) | |
# better directly produce the complex value | |
S = mag * (x + 1j * y) | |
audio = self.istft(S) | |
return audio | |
class IMDCTSymExpHead(FourierHead): | |
""" | |
IMDCT Head module for predicting MDCT coefficients with symmetric exponential function | |
Args: | |
dim (int): Hidden dimension of the model. | |
mdct_frame_len (int): Length of the MDCT frame. | |
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". | |
sample_rate (int, optional): The sample rate of the audio. If provided, the last layer will be initialized | |
based on perceptual scaling. Defaults to None. | |
clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
mdct_frame_len: int, | |
padding: str = "same", | |
sample_rate: Optional[int] = None, | |
clip_audio: bool = False, | |
): | |
super().__init__() | |
out_dim = mdct_frame_len // 2 | |
self.out = nn.Linear(dim, out_dim) | |
self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding) | |
self.clip_audio = clip_audio | |
if sample_rate is not None: | |
# optionally init the last layer following mel-scale | |
m_max = _hz_to_mel(sample_rate // 2) | |
m_pts = torch.linspace(0, m_max, out_dim) | |
f_pts = _mel_to_hz(m_pts) | |
scale = 1 - (f_pts / f_pts.max()) | |
with torch.no_grad(): | |
self.out.weight.mul_(scale.view(-1, 1)) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Forward pass of the IMDCTSymExpHead module. | |
Args: | |
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size, | |
L is the sequence length, and H denotes the model dimension. | |
Returns: | |
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal. | |
""" | |
x = self.out(x) | |
x = symexp(x) | |
x = torch.clip( | |
x, min=-1e2, max=1e2 | |
) # safeguard to prevent excessively large magnitudes | |
audio = self.imdct(x) | |
if self.clip_audio: | |
audio = torch.clip(x, min=-1.0, max=1.0) | |
return audio | |
class IMDCTCosHead(FourierHead): | |
""" | |
IMDCT Head module for predicting MDCT coefficients with parametrizing MDCT = exp(m) · cos(p) | |
Args: | |
dim (int): Hidden dimension of the model. | |
mdct_frame_len (int): Length of the MDCT frame. | |
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". | |
clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
mdct_frame_len: int, | |
padding: str = "same", | |
clip_audio: bool = False, | |
): | |
super().__init__() | |
self.clip_audio = clip_audio | |
self.out = nn.Linear(dim, mdct_frame_len) | |
self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Forward pass of the IMDCTCosHead module. | |
Args: | |
x (Tensor): Input tensor of shape (B, L, H), where B is the batch size, | |
L is the sequence length, and H denotes the model dimension. | |
Returns: | |
Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal. | |
""" | |
x = self.out(x) | |
m, p = x.chunk(2, dim=2) | |
m = torch.exp(m).clip( | |
max=1e2 | |
) # safeguard to prevent excessively large magnitudes | |
audio = self.imdct(m * torch.cos(p)) | |
if self.clip_audio: | |
audio = torch.clip(x, min=-1.0, max=1.0) | |
return audio | |
class ConvNeXtBlock(nn.Module): | |
"""ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal. | |
Args: | |
dim (int): Number of input channels. | |
intermediate_dim (int): Dimensionality of the intermediate layer. | |
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. | |
Defaults to None. | |
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. | |
None means non-conditional LayerNorm. Defaults to None. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
intermediate_dim: int, | |
layer_scale_init_value: float, | |
adanorm_num_embeddings: Optional[int] = None, | |
): | |
super().__init__() | |
self.dwconv = nn.Conv1d( | |
dim, dim, kernel_size=7, padding=3, groups=dim | |
) # depthwise conv | |
self.adanorm = adanorm_num_embeddings is not None | |
if adanorm_num_embeddings: | |
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6) | |
else: | |
self.norm = nn.LayerNorm(dim, eps=1e-6) | |
self.pwconv1 = nn.Linear( | |
dim, intermediate_dim | |
) # pointwise/1x1 convs, implemented with linear layers | |
self.act = nn.GELU() | |
self.pwconv2 = nn.Linear(intermediate_dim, dim) | |
self.gamma = ( | |
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) | |
if layer_scale_init_value > 0 | |
else None | |
) | |
def forward( | |
self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None | |
) -> torch.Tensor: | |
residual = x | |
x = self.dwconv(x) | |
x = x.transpose(1, 2) # (B, C, T) -> (B, T, C) | |
if self.adanorm: | |
assert cond_embedding_id is not None | |
x = self.norm(x, cond_embedding_id) | |
else: | |
x = self.norm(x) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.pwconv2(x) | |
if self.gamma is not None: | |
x = self.gamma * x | |
x = x.transpose(1, 2) # (B, T, C) -> (B, C, T) | |
x = residual + x | |
return x | |
class AdaLayerNorm(nn.Module): | |
""" | |
Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes | |
Args: | |
num_embeddings (int): Number of embeddings. | |
embedding_dim (int): Dimension of the embeddings. | |
""" | |
def __init__(self, num_embeddings: int, embedding_dim: int, eps: float = 1e-6): | |
super().__init__() | |
self.eps = eps | |
self.dim = embedding_dim | |
self.scale = nn.Embedding( | |
num_embeddings=num_embeddings, embedding_dim=embedding_dim | |
) | |
self.shift = nn.Embedding( | |
num_embeddings=num_embeddings, embedding_dim=embedding_dim | |
) | |
torch.nn.init.ones_(self.scale.weight) | |
torch.nn.init.zeros_(self.shift.weight) | |
def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor) -> torch.Tensor: | |
scale = self.scale(cond_embedding_id) | |
shift = self.shift(cond_embedding_id) | |
x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps) | |
x = x * scale + shift | |
return x | |
class ResBlock1(nn.Module): | |
""" | |
ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions, | |
but without upsampling layers. | |
Args: | |
dim (int): Number of input channels. | |
kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3. | |
dilation (tuple[int], optional): Dilation factors for the dilated convolutions. | |
Defaults to (1, 3, 5). | |
lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function. | |
Defaults to 0.1. | |
layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. | |
Defaults to None. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
kernel_size: int = 3, | |
dilation: Tuple[int, int, int] = (1, 3, 5), | |
lrelu_slope: float = 0.1, | |
layer_scale_init_value: Optional[float] = None, | |
): | |
super().__init__() | |
self.lrelu_slope = lrelu_slope | |
self.convs1 = nn.ModuleList( | |
[ | |
weight_norm( | |
nn.Conv1d( | |
dim, | |
dim, | |
kernel_size, | |
1, | |
dilation=dilation[0], | |
padding=self.get_padding(kernel_size, dilation[0]), | |
) | |
), | |
weight_norm( | |
nn.Conv1d( | |
dim, | |
dim, | |
kernel_size, | |
1, | |
dilation=dilation[1], | |
padding=self.get_padding(kernel_size, dilation[1]), | |
) | |
), | |
weight_norm( | |
nn.Conv1d( | |
dim, | |
dim, | |
kernel_size, | |
1, | |
dilation=dilation[2], | |
padding=self.get_padding(kernel_size, dilation[2]), | |
) | |
), | |
] | |
) | |
self.convs2 = nn.ModuleList( | |
[ | |
weight_norm( | |
nn.Conv1d( | |
dim, | |
dim, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=self.get_padding(kernel_size, 1), | |
) | |
), | |
weight_norm( | |
nn.Conv1d( | |
dim, | |
dim, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=self.get_padding(kernel_size, 1), | |
) | |
), | |
weight_norm( | |
nn.Conv1d( | |
dim, | |
dim, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=self.get_padding(kernel_size, 1), | |
) | |
), | |
] | |
) | |
self.gamma = nn.ParameterList( | |
[ | |
( | |
nn.Parameter( | |
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True | |
) | |
if layer_scale_init_value is not None | |
else None | |
), | |
( | |
nn.Parameter( | |
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True | |
) | |
if layer_scale_init_value is not None | |
else None | |
), | |
( | |
nn.Parameter( | |
layer_scale_init_value * torch.ones(dim, 1), requires_grad=True | |
) | |
if layer_scale_init_value is not None | |
else None | |
), | |
] | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma): | |
xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope) | |
xt = c1(xt) | |
xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope) | |
xt = c2(xt) | |
if gamma is not None: | |
xt = gamma * xt | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs1: | |
remove_weight_norm(l) | |
for l in self.convs2: | |
remove_weight_norm(l) | |
def get_padding(kernel_size: int, dilation: int = 1) -> int: | |
return int((kernel_size * dilation - dilation) / 2) | |
class Backbone(nn.Module): | |
"""Base class for the generator's backbone. It preserves the same temporal resolution across all layers.""" | |
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: | |
""" | |
Args: | |
x (Tensor): Input tensor of shape (B, C, L), where B is the batch size, | |
C denotes output features, and L is the sequence length. | |
Returns: | |
Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length, | |
and H denotes the model dimension. | |
""" | |
raise NotImplementedError("Subclasses must implement the forward method.") | |
class VocosBackbone(Backbone): | |
""" | |
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization | |
Args: | |
input_channels (int): Number of input features channels. | |
dim (int): Hidden dimension of the model. | |
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock. | |
num_layers (int): Number of ConvNeXtBlock layers. | |
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`. | |
adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. | |
None means non-conditional model. Defaults to None. | |
""" | |
def __init__( | |
self, | |
input_channels: int, | |
dim: int, | |
intermediate_dim: int, | |
num_layers: int, | |
layer_scale_init_value: Optional[float] = None, | |
adanorm_num_embeddings: Optional[int] = None, | |
): | |
super().__init__() | |
self.input_channels = input_channels | |
self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3) | |
self.adanorm = adanorm_num_embeddings is not None | |
if adanorm_num_embeddings: | |
self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6) | |
else: | |
self.norm = nn.LayerNorm(dim, eps=1e-6) | |
layer_scale_init_value = layer_scale_init_value or 1 / num_layers | |
self.convnext = nn.ModuleList( | |
[ | |
ConvNeXtBlock( | |
dim=dim, | |
intermediate_dim=intermediate_dim, | |
layer_scale_init_value=layer_scale_init_value, | |
adanorm_num_embeddings=adanorm_num_embeddings, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, (nn.Conv1d, nn.Linear)): | |
nn.init.trunc_normal_(m.weight, std=0.02) | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: | |
bandwidth_id = kwargs.get("bandwidth_id", None) | |
x = self.embed(x) | |
if self.adanorm: | |
assert bandwidth_id is not None | |
x = self.norm(x.transpose(1, 2), cond_embedding_id=bandwidth_id) | |
else: | |
x = self.norm(x.transpose(1, 2)) | |
x = x.transpose(1, 2) | |
for conv_block in self.convnext: | |
x = conv_block(x, cond_embedding_id=bandwidth_id) | |
x = self.final_layer_norm(x.transpose(1, 2)) | |
return x | |
class VocosResNetBackbone(Backbone): | |
""" | |
Vocos backbone module built with ResBlocks. | |
Args: | |
input_channels (int): Number of input features channels. | |
dim (int): Hidden dimension of the model. | |
num_blocks (int): Number of ResBlock1 blocks. | |
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None. | |
""" | |
def __init__( | |
self, | |
input_channels, | |
dim, | |
num_blocks, | |
layer_scale_init_value=None, | |
): | |
super().__init__() | |
self.input_channels = input_channels | |
self.embed = weight_norm( | |
nn.Conv1d(input_channels, dim, kernel_size=3, padding=1) | |
) | |
layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3 | |
self.resnet = nn.Sequential( | |
*[ | |
ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value) | |
for _ in range(num_blocks) | |
] | |
) | |
def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: | |
x = self.embed(x) | |
x = self.resnet(x) | |
x = x.transpose(1, 2) | |
return x | |
class Vocos(nn.Module): | |
def __init__( | |
self, | |
input_channels: int = 256, | |
dim: int = 384, | |
intermediate_dim: int = 1152, | |
num_layers: int = 8, | |
n_fft: int = 800, | |
hop_size: int = 200, | |
padding: str = "same", | |
adanorm_num_embeddings=None, | |
cfg=None, | |
): | |
super().__init__() | |
input_channels = ( | |
cfg.input_channels | |
if cfg is not None and hasattr(cfg, "input_channels") | |
else input_channels | |
) | |
dim = cfg.dim if cfg is not None and hasattr(cfg, "dim") else dim | |
intermediate_dim = ( | |
cfg.intermediate_dim | |
if cfg is not None and hasattr(cfg, "intermediate_dim") | |
else intermediate_dim | |
) | |
num_layers = ( | |
cfg.num_layers | |
if cfg is not None and hasattr(cfg, "num_layers") | |
else num_layers | |
) | |
adanorm_num_embeddings = ( | |
cfg.adanorm_num_embeddings | |
if cfg is not None and hasattr(cfg, "adanorm_num_embeddings") | |
else adanorm_num_embeddings | |
) | |
n_fft = cfg.n_fft if cfg is not None and hasattr(cfg, "n_fft") else n_fft | |
hop_size = ( | |
cfg.hop_size if cfg is not None and hasattr(cfg, "hop_size") else hop_size | |
) | |
padding = ( | |
cfg.padding if cfg is not None and hasattr(cfg, "padding") else padding | |
) | |
self.backbone = VocosBackbone( | |
input_channels=input_channels, | |
dim=dim, | |
intermediate_dim=intermediate_dim, | |
num_layers=num_layers, | |
adanorm_num_embeddings=adanorm_num_embeddings, | |
) | |
self.head = ISTFTHead(dim, n_fft, hop_size, padding) | |
def forward(self, x): | |
x = self.backbone(x) | |
x = self.head(x) | |
return x[:, None, :] | |