Spaces:
Running
Running
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
from diffusers import DiffusionPipeline | |
class DiffusionInferencePipeline(DiffusionPipeline): | |
def __init__(self, network, scheduler, num_inference_timesteps=1000): | |
super().__init__() | |
self.register_modules(network=network, scheduler=scheduler) | |
self.num_inference_timesteps = num_inference_timesteps | |
def __call__( | |
self, | |
initial_noise: torch.Tensor, | |
conditioner: torch.Tensor = None, | |
): | |
r""" | |
Args: | |
initial_noise: The initial noise to be denoised. | |
conditioner:The conditioner. | |
n_inference_steps: The number of denoising steps. More denoising steps | |
usually lead to a higher quality at the expense of slower inference. | |
""" | |
mel = initial_noise | |
batch_size = mel.size(0) | |
self.scheduler.set_timesteps(self.num_inference_timesteps) | |
for t in self.progress_bar(self.scheduler.timesteps): | |
timestep = torch.full((batch_size,), t, device=mel.device, dtype=torch.long) | |
# 1. predict noise model_output | |
model_output = self.network(mel, timestep, conditioner) | |
# 2. denoise, compute previous step: x_t -> x_t-1 | |
mel = self.scheduler.step(model_output, t, mel).prev_sample | |
# 3. clamp | |
mel = mel.clamp(-1.0, 1.0) | |
return mel | |