maskgct / utils /distribution.py
Hecheng0625's picture
Upload 61 files
7ee3434 verified
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
import torch.nn.functional as F
from torch.distributions import Normal
def log_sum_exp(x):
"""numerically stable log_sum_exp implementation that prevents overflow"""
# TF ordering
axis = len(x.size()) - 1
m, _ = torch.max(x, dim=axis)
m2, _ = torch.max(x, dim=axis, keepdim=True)
return m + torch.log(torch.sum(torch.exp(x - m2), dim=axis))
def discretized_mix_logistic_loss(
y_hat, y, num_classes=256, log_scale_min=-7.0, reduce=True
):
"""Discretized mixture of logistic distributions loss
Note that it is assumed that input is scaled to [-1, 1].
Args:
y_hat (Tensor): Predicted output (B x C x T)
y (Tensor): Target (B x T x 1).
num_classes (int): Number of classes
log_scale_min (float): Log scale minimum value
reduce (bool): If True, the losses are averaged or summed for each
minibatch.
Returns
Tensor: loss
"""
assert y_hat.dim() == 3
assert y_hat.size(1) % 3 == 0
nr_mix = y_hat.size(1) // 3
# (B x T x C)
y_hat = y_hat.transpose(1, 2)
# unpack parameters. (B, T, num_mixtures) x 3
logit_probs = y_hat[:, :, :nr_mix]
means = y_hat[:, :, nr_mix : 2 * nr_mix]
log_scales = torch.clamp(y_hat[:, :, 2 * nr_mix : 3 * nr_mix], min=log_scale_min)
# B x T x 1 -> B x T x num_mixtures
y = y.expand_as(means)
centered_y = y - means
inv_stdv = torch.exp(-log_scales)
plus_in = inv_stdv * (centered_y + 1.0 / (num_classes - 1))
cdf_plus = torch.sigmoid(plus_in)
min_in = inv_stdv * (centered_y - 1.0 / (num_classes - 1))
cdf_min = torch.sigmoid(min_in)
# log probability for edge case of 0 (before scaling)
# equivalent: torch.log(torch.sigmoid(plus_in))
log_cdf_plus = plus_in - F.softplus(plus_in)
# log probability for edge case of 255 (before scaling)
# equivalent: (1 - torch.sigmoid(min_in)).log()
log_one_minus_cdf_min = -F.softplus(min_in)
# probability for all other cases
cdf_delta = cdf_plus - cdf_min
mid_in = inv_stdv * centered_y
# log probability in the center of the bin, to be used in extreme cases
# (not actually used in our code)
log_pdf_mid = mid_in - log_scales - 2.0 * F.softplus(mid_in)
# tf equivalent
"""
log_probs = tf.where(x < -0.999, log_cdf_plus,
tf.where(x > 0.999, log_one_minus_cdf_min,
tf.where(cdf_delta > 1e-5,
tf.log(tf.maximum(cdf_delta, 1e-12)),
log_pdf_mid - np.log(127.5))))
"""
# TODO: cdf_delta <= 1e-5 actually can happen. How can we choose the value
# for num_classes=65536 case? 1e-7? not sure..
inner_inner_cond = (cdf_delta > 1e-5).float()
inner_inner_out = inner_inner_cond * torch.log(
torch.clamp(cdf_delta, min=1e-12)
) + (1.0 - inner_inner_cond) * (log_pdf_mid - np.log((num_classes - 1) / 2))
inner_cond = (y > 0.999).float()
inner_out = (
inner_cond * log_one_minus_cdf_min + (1.0 - inner_cond) * inner_inner_out
)
cond = (y < -0.999).float()
log_probs = cond * log_cdf_plus + (1.0 - cond) * inner_out
log_probs = log_probs + F.log_softmax(logit_probs, -1)
if reduce:
return -torch.sum(log_sum_exp(log_probs))
else:
return -log_sum_exp(log_probs).unsqueeze(-1)
def to_one_hot(tensor, n, fill_with=1.0):
# we perform one hot encore with respect to the last axis
one_hot = torch.FloatTensor(tensor.size() + (n,)).zero_()
if tensor.is_cuda:
one_hot = one_hot.cuda()
one_hot.scatter_(len(tensor.size()), tensor.unsqueeze(-1), fill_with)
return one_hot
def sample_from_discretized_mix_logistic(y, log_scale_min=-7.0, clamp_log_scale=False):
"""
Sample from discretized mixture of logistic distributions
Args:
y (Tensor): B x C x T
log_scale_min (float): Log scale minimum value
Returns:
Tensor: sample in range of [-1, 1].
"""
assert y.size(1) % 3 == 0
nr_mix = y.size(1) // 3
# B x T x C
y = y.transpose(1, 2)
logit_probs = y[:, :, :nr_mix]
# sample mixture indicator from softmax
temp = logit_probs.data.new(logit_probs.size()).uniform_(1e-5, 1.0 - 1e-5)
temp = logit_probs.data - torch.log(-torch.log(temp))
_, argmax = temp.max(dim=-1)
# (B, T) -> (B, T, nr_mix)
one_hot = to_one_hot(argmax, nr_mix)
# select logistic parameters
means = torch.sum(y[:, :, nr_mix : 2 * nr_mix] * one_hot, dim=-1)
log_scales = torch.sum(y[:, :, 2 * nr_mix : 3 * nr_mix] * one_hot, dim=-1)
if clamp_log_scale:
log_scales = torch.clamp(log_scales, min=log_scale_min)
# sample from logistic & clip to interval
# we don't actually round to the nearest 8bit value when sampling
u = means.data.new(means.size()).uniform_(1e-5, 1.0 - 1e-5)
x = means + torch.exp(log_scales) * (torch.log(u) - torch.log(1.0 - u))
x = torch.clamp(torch.clamp(x, min=-1.0), max=1.0)
return x
# we can easily define discretized version of the gaussian loss, however,
# use continuous version as same as the https://clarinet-demo.github.io/
def mix_gaussian_loss(y_hat, y, log_scale_min=-7.0, reduce=True):
"""Mixture of continuous gaussian distributions loss
Note that it is assumed that input is scaled to [-1, 1].
Args:
y_hat (Tensor): Predicted output (B x C x T)
y (Tensor): Target (B x T x 1).
log_scale_min (float): Log scale minimum value
reduce (bool): If True, the losses are averaged or summed for each
minibatch.
Returns
Tensor: loss
"""
assert y_hat.dim() == 3
C = y_hat.size(1)
if C == 2:
nr_mix = 1
else:
assert y_hat.size(1) % 3 == 0
nr_mix = y_hat.size(1) // 3
# (B x T x C)
y_hat = y_hat.transpose(1, 2)
# unpack parameters.
if C == 2:
# special case for C == 2, just for compatibility
logit_probs = None
means = y_hat[:, :, 0:1]
log_scales = torch.clamp(y_hat[:, :, 1:2], min=log_scale_min)
else:
# (B, T, num_mixtures) x 3
logit_probs = y_hat[:, :, :nr_mix]
means = y_hat[:, :, nr_mix : 2 * nr_mix]
log_scales = torch.clamp(
y_hat[:, :, 2 * nr_mix : 3 * nr_mix], min=log_scale_min
)
# B x T x 1 -> B x T x num_mixtures
y = y.expand_as(means)
centered_y = y - means
dist = Normal(loc=0.0, scale=torch.exp(log_scales))
# do we need to add a trick to avoid log(0)?
log_probs = dist.log_prob(centered_y)
if nr_mix > 1:
log_probs = log_probs + F.log_softmax(logit_probs, -1)
if reduce:
if nr_mix == 1:
return -torch.sum(log_probs)
else:
return -torch.sum(log_sum_exp(log_probs))
else:
if nr_mix == 1:
return -log_probs
else:
return -log_sum_exp(log_probs).unsqueeze(-1)
def sample_from_mix_gaussian(y, log_scale_min=-7.0):
"""
Sample from (discretized) mixture of gaussian distributions
Args:
y (Tensor): B x C x T
log_scale_min (float): Log scale minimum value
Returns:
Tensor: sample in range of [-1, 1].
"""
C = y.size(1)
if C == 2:
nr_mix = 1
else:
assert y.size(1) % 3 == 0
nr_mix = y.size(1) // 3
# B x T x C
y = y.transpose(1, 2)
if C == 2:
logit_probs = None
else:
logit_probs = y[:, :, :nr_mix]
if nr_mix > 1:
# sample mixture indicator from softmax
temp = logit_probs.data.new(logit_probs.size()).uniform_(1e-5, 1.0 - 1e-5)
temp = logit_probs.data - torch.log(-torch.log(temp))
_, argmax = temp.max(dim=-1)
# (B, T) -> (B, T, nr_mix)
one_hot = to_one_hot(argmax, nr_mix)
# Select means and log scales
means = torch.sum(y[:, :, nr_mix : 2 * nr_mix] * one_hot, dim=-1)
log_scales = torch.sum(y[:, :, 2 * nr_mix : 3 * nr_mix] * one_hot, dim=-1)
else:
if C == 2:
means, log_scales = y[:, :, 0], y[:, :, 1]
elif C == 3:
means, log_scales = y[:, :, 1], y[:, :, 2]
else:
assert False, "shouldn't happen"
scales = torch.exp(log_scales)
dist = Normal(loc=means, scale=scales)
x = dist.sample()
x = torch.clamp(x, min=-1.0, max=1.0)
return x