Spaces:
Running
Running
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
from librosa.filters import mel as librosa_mel_fn | |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
# Min value: ln(1e-5) = -11.5129 | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def spectral_normalize_torch(magnitudes): | |
output = dynamic_range_compression_torch(magnitudes) | |
return output | |
def extract_linear_features(y, cfg, center=False): | |
if torch.min(y) < -1.0: | |
print("min value is ", torch.min(y)) | |
if torch.max(y) > 1.0: | |
print("max value is ", torch.max(y)) | |
global hann_window | |
hann_window[str(y.device)] = torch.hann_window(cfg.win_size).to(y.device) | |
y = torch.nn.functional.pad( | |
y.unsqueeze(1), | |
(int((cfg.n_fft - cfg.hop_size) / 2), int((cfg.n_fft - cfg.hop_size) / 2)), | |
mode="reflect", | |
) | |
y = y.squeeze(1) | |
# complex tensor as default, then use view_as_real for future pytorch compatibility | |
spec = torch.stft( | |
y, | |
cfg.n_fft, | |
hop_length=cfg.hop_size, | |
win_length=cfg.win_size, | |
window=hann_window[str(y.device)], | |
center=center, | |
pad_mode="reflect", | |
normalized=False, | |
onesided=True, | |
return_complex=True, | |
) | |
spec = torch.view_as_real(spec) | |
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) | |
spec = torch.squeeze(spec, 0) | |
return spec | |
def mel_spectrogram_torch(y, cfg, center=False): | |
""" | |
TODO: to merge this funtion with the extract_mel_features below | |
""" | |
if torch.min(y) < -1.0: | |
print("min value is ", torch.min(y)) | |
if torch.max(y) > 1.0: | |
print("max value is ", torch.max(y)) | |
global mel_basis, hann_window | |
if cfg.fmax not in mel_basis: | |
mel = librosa_mel_fn( | |
sr=cfg.sample_rate, | |
n_fft=cfg.n_fft, | |
n_mels=cfg.n_mel, | |
fmin=cfg.fmin, | |
fmax=cfg.fmax, | |
) | |
mel_basis[str(cfg.fmax) + "_" + str(y.device)] = ( | |
torch.from_numpy(mel).float().to(y.device) | |
) | |
hann_window[str(y.device)] = torch.hann_window(cfg.win_size).to(y.device) | |
y = torch.nn.functional.pad( | |
y.unsqueeze(1), | |
(int((cfg.n_fft - cfg.hop_size) / 2), int((cfg.n_fft - cfg.hop_size) / 2)), | |
mode="reflect", | |
) | |
y = y.squeeze(1) | |
spec = torch.stft( | |
y, | |
cfg.n_fft, | |
hop_length=cfg.hop_size, | |
win_length=cfg.win_size, | |
window=hann_window[str(y.device)], | |
center=center, | |
pad_mode="reflect", | |
normalized=False, | |
onesided=True, | |
return_complex=True, | |
) | |
spec = torch.view_as_real(spec) | |
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) | |
spec = torch.matmul(mel_basis[str(cfg.fmax) + "_" + str(y.device)], spec) | |
spec = spectral_normalize_torch(spec) | |
return spec | |
mel_basis = {} | |
hann_window = {} | |
def extract_mel_features( | |
y, | |
cfg, | |
center=False, | |
): | |
"""Extract mel features | |
Args: | |
y (tensor): audio data in tensor | |
cfg (dict): configuration in cfg.preprocess | |
center (bool, optional): In STFT, whether t-th frame is centered at time t*hop_length. Defaults to False. | |
Returns: | |
tensor: a tensor containing the mel feature calculated based on STFT result | |
""" | |
if torch.min(y) < -1.0: | |
print("min value is ", torch.min(y)) | |
if torch.max(y) > 1.0: | |
print("max value is ", torch.max(y)) | |
global mel_basis, hann_window | |
if cfg.fmax not in mel_basis: | |
mel = librosa_mel_fn( | |
sr=cfg.sample_rate, | |
n_fft=cfg.n_fft, | |
n_mels=cfg.n_mel, | |
fmin=cfg.fmin, | |
fmax=cfg.fmax, | |
) | |
mel_basis[str(cfg.fmax) + "_" + str(y.device)] = ( | |
torch.from_numpy(mel).float().to(y.device) | |
) | |
hann_window[str(y.device)] = torch.hann_window(cfg.win_size).to(y.device) | |
y = torch.nn.functional.pad( | |
y.unsqueeze(1), | |
(int((cfg.n_fft - cfg.hop_size) / 2), int((cfg.n_fft - cfg.hop_size) / 2)), | |
mode="reflect", | |
) | |
y = y.squeeze(1) | |
# complex tensor as default, then use view_as_real for future pytorch compatibility | |
spec = torch.stft( | |
y, | |
cfg.n_fft, | |
hop_length=cfg.hop_size, | |
win_length=cfg.win_size, | |
window=hann_window[str(y.device)], | |
center=center, | |
pad_mode="reflect", | |
normalized=False, | |
onesided=True, | |
return_complex=True, | |
) | |
spec = torch.view_as_real(spec) | |
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) | |
spec = torch.matmul(mel_basis[str(cfg.fmax) + "_" + str(y.device)], spec) | |
spec = spectral_normalize_torch(spec) | |
return spec.squeeze(0) | |
def extract_mel_features_tts( | |
y, | |
cfg, | |
center=False, | |
taco=False, | |
_stft=None, | |
): | |
"""Extract mel features | |
Args: | |
y (tensor): audio data in tensor | |
cfg (dict): configuration in cfg.preprocess | |
center (bool, optional): In STFT, whether t-th frame is centered at time t*hop_length. Defaults to False. | |
taco: use tacotron mel | |
Returns: | |
tensor: a tensor containing the mel feature calculated based on STFT result | |
""" | |
if not taco: | |
if torch.min(y) < -1.0: | |
print("min value is ", torch.min(y)) | |
if torch.max(y) > 1.0: | |
print("max value is ", torch.max(y)) | |
global mel_basis, hann_window | |
if cfg.fmax not in mel_basis: | |
mel = librosa_mel_fn( | |
sr=cfg.sample_rate, | |
n_fft=cfg.n_fft, | |
n_mels=cfg.n_mel, | |
fmin=cfg.fmin, | |
fmax=cfg.fmax, | |
) | |
mel_basis[str(cfg.fmax) + "_" + str(y.device)] = ( | |
torch.from_numpy(mel).float().to(y.device) | |
) | |
hann_window[str(y.device)] = torch.hann_window(cfg.win_size).to(y.device) | |
y = torch.nn.functional.pad( | |
y.unsqueeze(1), | |
(int((cfg.n_fft - cfg.hop_size) / 2), int((cfg.n_fft - cfg.hop_size) / 2)), | |
mode="reflect", | |
) | |
y = y.squeeze(1) | |
# complex tensor as default, then use view_as_real for future pytorch compatibility | |
spec = torch.stft( | |
y, | |
cfg.n_fft, | |
hop_length=cfg.hop_size, | |
win_length=cfg.win_size, | |
window=hann_window[str(y.device)], | |
center=center, | |
pad_mode="reflect", | |
normalized=False, | |
onesided=True, | |
return_complex=True, | |
) | |
spec = torch.view_as_real(spec) | |
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) | |
spec = torch.matmul(mel_basis[str(cfg.fmax) + "_" + str(y.device)], spec) | |
spec = spectral_normalize_torch(spec) | |
else: | |
audio = torch.clip(y, -1, 1) | |
audio = torch.autograd.Variable(audio, requires_grad=False) | |
spec, energy = _stft.mel_spectrogram(audio) | |
return spec.squeeze(0) | |
def amplitude_phase_spectrum(y, cfg): | |
hann_window = torch.hann_window(cfg.win_size).to(y.device) | |
y = torch.nn.functional.pad( | |
y.unsqueeze(1), | |
(int((cfg.n_fft - cfg.hop_size) / 2), int((cfg.n_fft - cfg.hop_size) / 2)), | |
mode="reflect", | |
) | |
y = y.squeeze(1) | |
stft_spec = torch.stft( | |
y, | |
cfg.n_fft, | |
hop_length=cfg.hop_size, | |
win_length=cfg.win_size, | |
window=hann_window, | |
center=False, | |
return_complex=True, | |
) | |
stft_spec = torch.view_as_real(stft_spec) | |
if stft_spec.size()[0] == 1: | |
stft_spec = stft_spec.squeeze(0) | |
if len(list(stft_spec.size())) == 4: | |
rea = stft_spec[:, :, :, 0] # [batch_size, n_fft//2+1, frames] | |
imag = stft_spec[:, :, :, 1] # [batch_size, n_fft//2+1, frames] | |
else: | |
rea = stft_spec[:, :, 0] # [n_fft//2+1, frames] | |
imag = stft_spec[:, :, 1] # [n_fft//2+1, frames] | |
log_amplitude = torch.log( | |
torch.abs(torch.sqrt(torch.pow(rea, 2) + torch.pow(imag, 2))) + 1e-5 | |
) # [n_fft//2+1, frames] | |
phase = torch.atan2(imag, rea) # [n_fft//2+1, frames] | |
return log_amplitude, phase, rea, imag | |