# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F import torch.nn as nn from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d from torch.nn.utils import weight_norm, spectral_norm from modules.vocoder_blocks import * LRELU_SLOPE = 0.1 class ISTFT(nn.Module): """ Custom implementation of ISTFT since torch.istft doesn't allow custom padding (other than `center=True`) with windowing. This is because the NOLA (Nonzero Overlap Add) check fails at the edges. See issue: https://github.com/pytorch/pytorch/issues/62323 Specifically, in the context of neural vocoding we are interested in "same" padding analogous to CNNs. The NOLA constraint is met as we trim padded samples anyway. Args: n_fft (int): Size of Fourier transform. hop_length (int): The distance between neighboring sliding window frames. win_length (int): The size of window frame and STFT filter. padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". """ def __init__( self, n_fft: int, hop_length: int, win_length: int, padding: str = "same", ): super().__init__() if padding not in ["center", "same"]: raise ValueError("Padding must be 'center' or 'same'.") self.padding = padding self.n_fft = n_fft self.hop_length = hop_length self.win_length = win_length def forward(self, spec: torch.Tensor, window) -> torch.Tensor: """ Compute the Inverse Short Time Fourier Transform (ISTFT) of a complex spectrogram. Args: spec (Tensor): Input complex spectrogram of shape (B, N, T), where B is the batch size, N is the number of frequency bins, and T is the number of time frames. Returns: Tensor: Reconstructed time-domain signal of shape (B, L), where L is the length of the output signal. """ if self.padding == "center": # Fallback to pytorch native implementation return torch.istft( spec, self.n_fft, self.hop_length, self.win_length, window, center=True, ) elif self.padding == "same": pad = (self.win_length - self.hop_length) // 2 else: raise ValueError("Padding must be 'center' or 'same'.") assert spec.dim() == 3, "Expected a 3D tensor as input" B, N, T = spec.shape # Inverse FFT ifft = torch.fft.irfft(spec, self.n_fft, dim=1, norm="backward") ifft = ifft * window[None, :, None] # Overlap and Add output_size = (T - 1) * self.hop_length + self.win_length y = torch.nn.functional.fold( ifft, output_size=(1, output_size), kernel_size=(1, self.win_length), stride=(1, self.hop_length), )[:, 0, 0, pad:-pad] # Window envelope window_sq = window.square().expand(1, T, -1).transpose(1, 2) window_envelope = torch.nn.functional.fold( window_sq, output_size=(1, output_size), kernel_size=(1, self.win_length), stride=(1, self.hop_length), ).squeeze()[pad:-pad] # Normalize assert (window_envelope > 1e-11).all() y = y / window_envelope return y # The ASP and PSP Module are adopted from APNet under the MIT License # https://github.com/YangAi520/APNet/blob/main/models.py class ASPResBlock(torch.nn.Module): def __init__(self, cfg, channels, kernel_size=3, dilation=(1, 3, 5)): super(ASPResBlock, self).__init__() self.cfg = cfg self.convs1 = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]), ) ), ] ) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), ] ) self.convs2.apply(init_weights) def forward(self, x): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) xt = c2(xt) x = xt + x return x class PSPResBlock(torch.nn.Module): def __init__(self, cfg, channels, kernel_size=3, dilation=(1, 3, 5)): super(PSPResBlock, self).__init__() self.cfg = cfg self.convs1 = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]), ) ), ] ) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), ] ) self.convs2.apply(init_weights) def forward(self, x): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) xt = c2(xt) x = xt + x return x class APNet(torch.nn.Module): def __init__(self, cfg): super(APNet, self).__init__() self.cfg = cfg self.ASP_num_kernels = len(cfg.model.apnet.ASP_resblock_kernel_sizes) self.PSP_num_kernels = len(cfg.model.apnet.PSP_resblock_kernel_sizes) self.ASP_input_conv = weight_norm( Conv1d( cfg.preprocess.n_mel, cfg.model.apnet.ASP_channel, cfg.model.apnet.ASP_input_conv_kernel_size, 1, padding=get_padding(cfg.model.apnet.ASP_input_conv_kernel_size, 1), ) ) self.PSP_input_conv = weight_norm( Conv1d( cfg.preprocess.n_mel, cfg.model.apnet.PSP_channel, cfg.model.apnet.PSP_input_conv_kernel_size, 1, padding=get_padding(cfg.model.apnet.PSP_input_conv_kernel_size, 1), ) ) self.ASP_ResNet = nn.ModuleList() for j, (k, d) in enumerate( zip( cfg.model.apnet.ASP_resblock_kernel_sizes, cfg.model.apnet.ASP_resblock_dilation_sizes, ) ): self.ASP_ResNet.append(ASPResBlock(cfg, cfg.model.apnet.ASP_channel, k, d)) self.PSP_ResNet = nn.ModuleList() for j, (k, d) in enumerate( zip( cfg.model.apnet.PSP_resblock_kernel_sizes, cfg.model.apnet.PSP_resblock_dilation_sizes, ) ): self.PSP_ResNet.append(PSPResBlock(cfg, cfg.model.apnet.PSP_channel, k, d)) self.ASP_output_conv = weight_norm( Conv1d( cfg.model.apnet.ASP_channel, cfg.preprocess.n_fft // 2 + 1, cfg.model.apnet.ASP_output_conv_kernel_size, 1, padding=get_padding(cfg.model.apnet.ASP_output_conv_kernel_size, 1), ) ) self.PSP_output_R_conv = weight_norm( Conv1d( cfg.model.apnet.PSP_channel, cfg.preprocess.n_fft // 2 + 1, cfg.model.apnet.PSP_output_R_conv_kernel_size, 1, padding=get_padding(cfg.model.apnet.PSP_output_R_conv_kernel_size, 1), ) ) self.PSP_output_I_conv = weight_norm( Conv1d( cfg.model.apnet.PSP_channel, cfg.preprocess.n_fft // 2 + 1, cfg.model.apnet.PSP_output_I_conv_kernel_size, 1, padding=get_padding(cfg.model.apnet.PSP_output_I_conv_kernel_size, 1), ) ) self.iSTFT = ISTFT( self.cfg.preprocess.n_fft, hop_length=self.cfg.preprocess.hop_size, win_length=self.cfg.preprocess.win_size, ) self.ASP_output_conv.apply(init_weights) self.PSP_output_R_conv.apply(init_weights) self.PSP_output_I_conv.apply(init_weights) def forward(self, mel): logamp = self.ASP_input_conv(mel) logamps = None for j in range(self.ASP_num_kernels): if logamps is None: logamps = self.ASP_ResNet[j](logamp) else: logamps += self.ASP_ResNet[j](logamp) logamp = logamps / self.ASP_num_kernels logamp = F.leaky_relu(logamp) logamp = self.ASP_output_conv(logamp) pha = self.PSP_input_conv(mel) phas = None for j in range(self.PSP_num_kernels): if phas is None: phas = self.PSP_ResNet[j](pha) else: phas += self.PSP_ResNet[j](pha) pha = phas / self.PSP_num_kernels pha = F.leaky_relu(pha) R = self.PSP_output_R_conv(pha) I = self.PSP_output_I_conv(pha) pha = torch.atan2(I, R) rea = torch.exp(logamp) * torch.cos(pha) imag = torch.exp(logamp) * torch.sin(pha) spec = torch.cat((rea.unsqueeze(-1), imag.unsqueeze(-1)), -1) spec = torch.view_as_complex(spec) audio = self.iSTFT.forward( spec, torch.hann_window(self.cfg.preprocess.win_size).to(mel.device) ) return logamp, pha, rea, imag, audio.unsqueeze(1)