# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from torch.nn import Conv1d, ConvTranspose1d from torch.nn.utils import weight_norm, remove_weight_norm from modules.vocoder_blocks import * from modules.activation_functions import * from modules.anti_aliasing import * LRELU_SLOPE = 0.1 # The AMPBlock Module is adopted from BigVGAN under the MIT License # https://github.com/NVIDIA/BigVGAN class AMPBlock1(torch.nn.Module): def __init__( self, cfg, channels, kernel_size=3, dilation=(1, 3, 5), activation=None ): super(AMPBlock1, self).__init__() self.cfg = cfg self.convs1 = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[2], padding=get_padding(kernel_size, dilation[2]), ) ), ] ) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1), ) ), ] ) self.convs2.apply(init_weights) self.num_layers = len(self.convs1) + len( self.convs2 ) # total number of conv layers if ( activation == "snake" ): # periodic nonlinearity with snake function and anti-aliasing self.activations = nn.ModuleList( [ Activation1d( activation=Snake( channels, alpha_logscale=cfg.model.bigvgan.snake_logscale ) ) for _ in range(self.num_layers) ] ) elif ( activation == "snakebeta" ): # periodic nonlinearity with snakebeta function and anti-aliasing self.activations = nn.ModuleList( [ Activation1d( activation=SnakeBeta( channels, alpha_logscale=cfg.model.bigvgan.snake_logscale ) ) for _ in range(self.num_layers) ] ) else: raise NotImplementedError( "activation incorrectly specified. check the config file and look for 'activation'." ) def forward(self, x): acts1, acts2 = self.activations[::2], self.activations[1::2] for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2): xt = a1(x) xt = c1(xt) xt = a2(xt) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class AMPBlock2(torch.nn.Module): def __init__(self, cfg, channels, kernel_size=3, dilation=(1, 3), activation=None): super(AMPBlock2, self).__init__() self.cfg = cfg self.convs = nn.ModuleList( [ weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]), ) ), weight_norm( Conv1d( channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]), ) ), ] ) self.convs.apply(init_weights) self.num_layers = len(self.convs) # total number of conv layers if ( activation == "snake" ): # periodic nonlinearity with snake function and anti-aliasing self.activations = nn.ModuleList( [ Activation1d( activation=Snake( channels, alpha_logscale=cfg.model.bigvgan.snake_logscale ) ) for _ in range(self.num_layers) ] ) elif ( activation == "snakebeta" ): # periodic nonlinearity with snakebeta function and anti-aliasing self.activations = nn.ModuleList( [ Activation1d( activation=SnakeBeta( channels, alpha_logscale=cfg.model.bigvgan.snake_logscale ) ) for _ in range(self.num_layers) ] ) else: raise NotImplementedError( "activation incorrectly specified. check the config file and look for 'activation'." ) def forward(self, x): for c, a in zip(self.convs, self.activations): xt = a(x) xt = c(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) class BigVGAN(torch.nn.Module): def __init__(self, cfg): super(BigVGAN, self).__init__() self.cfg = cfg self.num_kernels = len(cfg.model.bigvgan.resblock_kernel_sizes) self.num_upsamples = len(cfg.model.bigvgan.upsample_rates) # Conv pre to boost channels self.conv_pre = weight_norm( Conv1d( cfg.preprocess.n_mel, cfg.model.bigvgan.upsample_initial_channel, 7, 1, padding=3, ) ) resblock = AMPBlock1 if cfg.model.bigvgan.resblock == "1" else AMPBlock2 # Upsamplers self.ups = nn.ModuleList() for i, (u, k) in enumerate( zip( cfg.model.bigvgan.upsample_rates, cfg.model.bigvgan.upsample_kernel_sizes, ) ): self.ups.append( nn.ModuleList( [ weight_norm( ConvTranspose1d( cfg.model.bigvgan.upsample_initial_channel // (2**i), cfg.model.bigvgan.upsample_initial_channel // (2 ** (i + 1)), k, u, padding=(k - u) // 2, ) ) ] ) ) # Res Blocks with AMP and Anti-aliasing self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = cfg.model.bigvgan.upsample_initial_channel // (2 ** (i + 1)) for j, (k, d) in enumerate( zip( cfg.model.bigvgan.resblock_kernel_sizes, cfg.model.bigvgan.resblock_dilation_sizes, ) ): self.resblocks.append( resblock(cfg, ch, k, d, activation=cfg.model.bigvgan.activation) ) # Conv post for result if cfg.model.bigvgan.activation == "snake": activation_post = Snake(ch, alpha_logscale=cfg.model.bigvgan.snake_logscale) self.activation_post = Activation1d(activation=activation_post) elif cfg.model.bigvgan.activation == "snakebeta": activation_post = SnakeBeta( ch, alpha_logscale=cfg.model.bigvgan.snake_logscale ) self.activation_post = Activation1d(activation=activation_post) else: raise NotImplementedError( "activation incorrectly specified. check the config file and look for 'activation'." ) self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) # Weight Norm for i in range(len(self.ups)): self.ups[i].apply(init_weights) self.conv_post.apply(init_weights) def forward(self, x): x = self.conv_pre(x) for i in range(self.num_upsamples): for i_up in range(len(self.ups[i])): x = self.ups[i][i_up](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i * self.num_kernels + j](x) else: xs += self.resblocks[i * self.num_kernels + j](x) x = xs / self.num_kernels x = self.activation_post(x) x = self.conv_post(x) x = torch.tanh(x) return x def remove_weight_norm(self): print("Removing weight norm...") for l in self.ups: for l_i in l: remove_weight_norm(l_i) for l in self.resblocks: l.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post)