# Amphion Diffusion-based Vocoder Recipe
## Supported Model Architectures
Diffusion-based Vocoders utilize the diffusion process for audio generation, as illustrated below:
Until now, Amphion Diffusion-based Vocoder has supported the following models and training strategies.
- **Models**
- [DiffWave](https://arxiv.org/pdf/2009.09761)
- **Training and Inference Strategy**
- [DDPM](https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html)
You can use any vocoder architecture with any dataset you want. There are four steps in total:
1. Data preparation
2. Feature extraction
3. Training
4. Inference
> **NOTE:** You need to run every command of this recipe in the `Amphion` root path:
> ```bash
> cd Amphion
> ```
## 1. Data Preparation
You can train the vocoder with any datasets. Amphion's supported open-source datasets are detailed [here](../../../datasets/README.md).
### Configuration
Specify the dataset path in `exp_config_base.json`. Note that you can change the `dataset` list to use your preferred datasets.
```json
"dataset": [
"csd",
"kising",
"m4singer",
"nus48e",
"opencpop",
"opensinger",
"opera",
"pjs",
"popbutfy",
"popcs",
"ljspeech",
"vctk",
"libritts",
],
"dataset_path": {
// TODO: Fill in your dataset path
"csd": "[dataset path]",
"kising": "[dataset path]",
"m4singer": "[dataset path]",
"nus48e": "[dataset path]",
"opencpop": "[dataset path]",
"opensinger": "[dataset path]",
"opera": "[dataset path]",
"pjs": "[dataset path]",
"popbutfy": "[dataset path]",
"popcs": "[dataset path]",
"ljspeech": "[dataset path]",
"vctk": "[dataset path]",
"libritts": "[dataset path]",
},
```
### 2. Feature Extraction
The needed features are speficied in the individual vocoder direction so it doesn't require any modification.
### Configuration
Specify the dataset path and the output path for saving the processed data and the training model in `exp_config_base.json`:
```json
// TODO: Fill in the output log path. The default value is "Amphion/ckpts/vocoder"
"log_dir": "ckpts/vocoder",
"preprocess": {
// TODO: Fill in the output data path. The default value is "Amphion/data"
"processed_dir": "data",
...
},
```
### Run
Run the `run.sh` as the preproces stage (set `--stage 1`).
```bash
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 1
```
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "1"`.
## 3. Training
### Configuration
We provide the default hyparameters in the `exp_config_base.json`. They can work on single NVIDIA-24g GPU. You can adjust them based on you GPU machines.
```json
"train": {
"batch_size": 32,
"max_epoch": 1000000,
"save_checkpoint_stride": [20],
"adamw": {
"lr": 2.0e-4,
"adam_b1": 0.8,
"adam_b2": 0.99
},
"exponential_lr": {
"lr_decay": 0.999
},
}
```
### Run
Run the `run.sh` as the training stage (set `--stage 2`). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in `Amphion/ckpts/vocoder/[YourExptName]`.
```bash
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 2 --name [YourExptName]
```
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "0,1,2,3"`.
If you want to resume or finetune from a pretrained model, run:
```bash
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 2 \
--name [YourExptName] \
--resume_type ["resume" for resuming training and "finetune" for loading parameters only] \
--checkpoint Amphion/ckpts/vocoder/[YourExptName]/checkpoint \
```
> **NOTE:** For multi-gpu training, the `main_process_port` is set as `29500` in default. You can change it when running `run.sh` by specifying such as `--main_process_port 29501`.
## 4. Inference
### Run
Run the `run.sh` as the training stage (set `--stage 3`), we provide three different inference modes, including `infer_from_dataset`, `infer_from_feature`, `and infer_from_audio`.
```bash
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 3 \
--infer_mode [Your chosen inference mode] \
--infer_datasets [Datasets you want to inference, needed when infer_from_dataset] \
--infer_feature_dir [Your path to your predicted acoustic features, needed when infer_from_feature] \
--infer_audio_dir [Your path to your audio files, needed when infer_form_audio] \
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
```
#### a. Inference from Dataset
Run the `run.sh` with specified datasets, here is an example.
```bash
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 3 \
--infer_mode infer_from_dataset \
--infer_datasets "libritts vctk ljspeech" \
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
```
#### b. Inference from Features
If you want to inference from your generated acoustic features, you should first prepare your acoustic features into the following structure:
```plaintext
┣ {infer_feature_dir}
┃ ┣ mels
┃ ┃ ┣ sample1.npy
┃ ┃ ┣ sample2.npy
```
Then run the `run.sh` with specificed folder direction, here is an example.
```bash
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 3 \
--infer_mode infer_from_feature \
--infer_feature_dir [Your path to your predicted acoustic features] \
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
```
#### c. Inference from Audios
If you want to inference from audios for quick analysis synthesis, you should first prepare your audios into the following structure:
```plaintext
┣ audios
┃ ┣ sample1.wav
┃ ┣ sample2.wav
```
Then run the `run.sh` with specificed folder direction, here is an example.
```bash
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 3 \
--infer_mode infer_from_audio \
--infer_audio_dir [Your path to your audio files] \
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
```