# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This source file is copied from https://github.com/facebookresearch/encodec # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """Residual vector quantizer implementation.""" from dataclasses import dataclass, field import math import typing as tp import torch from torch import nn from .core_vq import ResidualVectorQuantization @dataclass class QuantizedResult: quantized: torch.Tensor codes: torch.Tensor bandwidth: torch.Tensor # bandwidth in kb/s used, per batch item. penalty: tp.Optional[torch.Tensor] = None metrics: dict = field(default_factory=dict) class ResidualVectorQuantizer(nn.Module): """Residual Vector Quantizer. Args: dimension (int): Dimension of the codebooks. n_q (int): Number of residual vector quantizers used. bins (int): Codebook size. decay (float): Decay for exponential moving average over the codebooks. kmeans_init (bool): Whether to use kmeans to initialize the codebooks. kmeans_iters (int): Number of iterations used for kmeans initialization. threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes that have an exponential moving average cluster size less than the specified threshold with randomly selected vector from the current batch. """ def __init__( self, dimension: int = 256, n_q: int = 8, bins: int = 1024, decay: float = 0.99, kmeans_init: bool = True, kmeans_iters: int = 50, threshold_ema_dead_code: int = 2, ): super().__init__() self.n_q = n_q self.dimension = dimension self.bins = bins self.decay = decay self.kmeans_init = kmeans_init self.kmeans_iters = kmeans_iters self.threshold_ema_dead_code = threshold_ema_dead_code self.vq = ResidualVectorQuantization( dim=self.dimension, codebook_size=self.bins, num_quantizers=self.n_q, decay=self.decay, kmeans_init=self.kmeans_init, kmeans_iters=self.kmeans_iters, threshold_ema_dead_code=self.threshold_ema_dead_code, ) def forward( self, x: torch.Tensor, n_q: tp.Optional[int] = None, layers: tp.Optional[list] = None, ) -> QuantizedResult: """Residual vector quantization on the given input tensor. Args: x (torch.Tensor): Input tensor. n_q (int): Number of quantizer used to quantize. Default: All quantizers. layers (list): Layer that need to return quantized. Defalt: None. Returns: QuantizedResult: The quantized (or approximately quantized) representation with the associated numbert quantizers and layer quantized required to return. """ n_q = n_q if n_q else self.n_q if layers and max(layers) >= n_q: raise ValueError( f"Last layer index in layers: A {max(layers)}. Number of quantizers in RVQ: B {self.n_q}. A must less than B." ) quantized, codes, commit_loss, quantized_list = self.vq( x, n_q=n_q, layers=layers ) return quantized, codes, torch.mean(commit_loss), quantized_list def encode( self, x: torch.Tensor, n_q: tp.Optional[int] = None, st: tp.Optional[int] = None ) -> torch.Tensor: """Encode a given input tensor with the specified sample rate at the given bandwidth. The RVQ encode method sets the appropriate number of quantizer to use and returns indices for each quantizer. Args: x (torch.Tensor): Input tensor. n_q (int): Number of quantizer used to quantize. Default: All quantizers. st (int): Start to encode input from which layers. Default: 0. """ n_q = n_q if n_q else self.n_q st = st or 0 codes = self.vq.encode(x, n_q=n_q, st=st) return codes def decode(self, codes: torch.Tensor, st: int = 0) -> torch.Tensor: """Decode the given codes to the quantized representation. Args: codes (torch.Tensor): Input indices for each quantizer. st (int): Start to decode input codes from which layers. Default: 0. """ quantized = self.vq.decode(codes, st=st) return quantized