# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. ######## Build Experiment Environment ########### exp_dir=$(cd `dirname $0`; pwd) work_dir=$(dirname $(dirname $(dirname $exp_dir))) export WORK_DIR=$work_dir export PYTHONPATH=$work_dir export PYTHONIOENCODING=UTF-8 ######## Parse the Given Parameters from the Commond ########### options=$(getopt -o c:n:s --long gpu:,config:,name:,stage:,resume:,resume_from_ckpt_path:,resume_type:,infer_expt_dir:,infer_output_dir:,infer_source_file:,infer_source_audio_dir:,infer_target_speaker:,infer_key_shift:,infer_vocoder_dir: -- "$@") eval set -- "$options" while true; do case $1 in # Experimental Configuration File -c | --config) shift; exp_config=$1 ; shift ;; # Experimental Name -n | --name) shift; exp_name=$1 ; shift ;; # Running Stage -s | --stage) shift; running_stage=$1 ; shift ;; # Visible GPU machines. The default value is "0". --gpu) shift; gpu=$1 ; shift ;; # [Only for Training] Resume configuration --resume) shift; resume=$1 ; shift ;; # [Only for Training] The specific checkpoint path that you want to resume from. --resume_from_ckpt_path) shift; resume_from_ckpt_path=$1 ; shift ;; # [Only for Training] `resume` for loading all the things (including model weights, optimizer, scheduler, and random states). `finetune` for loading only the model weights. --resume_type) shift; resume_type=$1 ; shift ;; # [Only for Inference] The experiment dir. The value is like "[Your path to save logs and checkpoints]/[YourExptName]" --infer_expt_dir) shift; infer_expt_dir=$1 ; shift ;; # [Only for Inference] The output dir to save inferred audios. Its default value is "$expt_dir/result" --infer_output_dir) shift; infer_output_dir=$1 ; shift ;; # [Only for Inference] The inference source (can be a json file or a dir). For example, the source_file can be "[Your path to save processed data]/[YourDataset]/test.json", and the source_audio_dir can be "$work_dir/source_audio" which includes several audio files (*.wav, *.mp3 or *.flac). --infer_source_file) shift; infer_source_file=$1 ; shift ;; --infer_source_audio_dir) shift; infer_source_audio_dir=$1 ; shift ;; # [Only for Inference] Specify the target speaker you want to convert into. You can refer to "[Your path to save logs and checkpoints]/[Your Expt Name]/singers.json". In this singer look-up table, you can see the usable speaker names (all the keys of the dictionary). For example, for opencpop dataset, the speaker name would be "opencpop_female1". --infer_target_speaker) shift; infer_target_speaker=$1 ; shift ;; # [Only for Inference] For advanced users, you can modify the trans_key parameters into an integer (which means the semitones you want to transpose). Its default value is "autoshift". --infer_key_shift) shift; infer_key_shift=$1 ; shift ;; # [Only for Inference] The vocoder dir. Its default value is Amphion/pretrained/bigvgan. See Amphion/pretrained/README.md to download the pretrained BigVGAN vocoders. --infer_vocoder_dir) shift; infer_vocoder_dir=$1 ; shift ;; --) shift ; break ;; *) echo "Invalid option: $1" exit 1 ;; esac done ### Value check ### if [ -z "$running_stage" ]; then echo "[Error] Please specify the running stage" exit 1 fi if [ -z "$exp_config" ]; then exp_config="${exp_dir}"/exp_config.json fi echo "Exprimental Configuration File: $exp_config" if [ -z "$gpu" ]; then gpu="0" fi ######## Features Extraction ########### if [ $running_stage -eq 1 ]; then CUDA_VISIBLE_DEVICES=$gpu python "${work_dir}"/bins/svc/preprocess.py \ --config $exp_config \ --num_workers 4 fi ######## Training ########### if [ $running_stage -eq 2 ]; then if [ -z "$exp_name" ]; then echo "[Error] Please specify the experiments name" exit 1 fi echo "Exprimental Name: $exp_name" # add default value if [ -z "$resume_from_ckpt_path" ]; then resume_from_ckpt_path="" fi if [ -z "$resume_type" ]; then resume_type="resume" fi if [ "$resume" = true ]; then echo "Resume from the existing experiment..." CUDA_VISIBLE_DEVICES="$gpu" accelerate launch "${work_dir}"/bins/svc/train.py \ --config "$exp_config" \ --exp_name "$exp_name" \ --log_level info \ --resume \ --resume_from_ckpt_path "$resume_from_ckpt_path" \ --resume_type "$resume_type" else echo "Start a new experiment..." CUDA_VISIBLE_DEVICES="$gpu" accelerate launch "${work_dir}"/bins/svc/train.py \ --config "$exp_config" \ --exp_name "$exp_name" \ --log_level info fi fi ######## Inference/Conversion ########### if [ $running_stage -eq 3 ]; then if [ -z "$infer_expt_dir" ]; then echo "[Error] Please specify the experimental directionary. The value is like [Your path to save logs and checkpoints]/[YourExptName]" exit 1 fi if [ -z "$infer_output_dir" ]; then infer_output_dir="$expt_dir/result" fi if [ -z "$infer_source_file" ] && [ -z "$infer_source_audio_dir" ]; then echo "[Error] Please specify the source file/dir. The inference source (can be a json file or a dir). For example, the source_file can be "[Your path to save processed data]/[YourDataset]/test.json", and the source_audio_dir should include several audio files (*.wav, *.mp3 or *.flac)." exit 1 fi if [ -z "$infer_source_file" ]; then infer_source=$infer_source_audio_dir fi if [ -z "$infer_source_audio_dir" ]; then infer_source=$infer_source_file fi if [ -z "$infer_target_speaker" ]; then echo "[Error] Please specify the target speaker. You can refer to "[Your path to save logs and checkpoints]/[Your Expt Name]/singers.json". In this singer look-up table, you can see the usable speaker names (all the keys of the dictionary). For example, for opencpop dataset, the speaker name would be "opencpop_female1"" exit 1 fi if [ -z "$infer_key_shift" ]; then infer_key_shift="autoshift" fi if [ -z "$infer_vocoder_dir" ]; then infer_vocoder_dir="$work_dir"/pretrained/bigvgan echo "[Warning] You don't specify the infer_vocoder_dir. It is set $infer_vocoder_dir by default. Make sure that you have followed Amphoion/pretrained/README.md to download the pretrained BigVGAN vocoder checkpoint." fi CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/svc/inference.py \ --config $exp_config \ --acoustics_dir $infer_expt_dir \ --vocoder_dir $infer_vocoder_dir \ --target_singer $infer_target_speaker \ --trans_key $infer_key_shift \ --source $infer_source \ --output_dir $infer_output_dir \ --log_level debug fi