File size: 9,883 Bytes
cc54eed
 
 
 
 
 
 
 
 
 
e9f320b
d3f8f1d
007c79c
cc54eed
 
 
 
7359460
e9f320b
 
cc54eed
 
e9f320b
cc54eed
d465e66
cc54eed
824b2b5
7c9588b
cc54eed
f452e56
cc54eed
824b2b5
e9f320b
824b2b5
 
e9f320b
824b2b5
 
a5c3e20
824b2b5
e9f320b
824b2b5
 
cc54eed
 
56fa2d2
 
 
 
 
 
cc54eed
 
 
 
 
d465e66
 
e508ff5
c1e1bbb
7db2e08
1a89b82
 
824b2b5
 
7db2e08
e55d6ba
824b2b5
 
067f7c8
cc54eed
 
 
067f7c8
cc54eed
 
 
 
 
 
 
 
 
 
e9f320b
cc54eed
 
 
 
 
 
d3e9df1
cc54eed
 
 
 
 
 
711724d
cc54eed
824b2b5
3f80461
f4f5727
3f80461
 
1a89b82
824b2b5
56fa2d2
 
 
 
cc54eed
824b2b5
cc54eed
 
 
 
d3e9df1
cc54eed
 
 
 
 
824b2b5
 
cc54eed
7db2e08
 
824b2b5
 
 
 
 
 
0a6b282
 
 
 
cc54eed
 
 
 
 
 
 
 
 
 
 
007c79c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc54eed
56acc31
cc54eed
 
 
 
a71ce00
824b2b5
a71ce00
cc54eed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56acc31
cc54eed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d465e66
cc54eed
 
 
 
 
 
 
 
 
 
 
52ef426
cc54eed
 
dc2804b
cc54eed
 
 
 
 
 
 
 
 
 
 
 
 
 
52ef426
cc54eed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
945caaf
cc54eed
 
 
 
 
 
 
 
 
 
 
 
 
9ac0d67
 
711724d
 
cc54eed
 
0a6b282
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import torch
from typing import List
from diffusers.utils import numpy_to_pil
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
#import spaces 
from previewer.modules import Previewer
#import user_history

os.environ['TOKENIZERS_PARALLELISM'] = 'false'

DESCRIPTION = "# Stable Cascade"
DESCRIPTION += "\n<p style=\"text-align: center\">Unofficial demo for <a href='https://huggingface.co/stabilityai/stable-cascade' target='_blank'>Stable Casacade</a>, a new high resolution text-to-image model by Stability AI, built on the Würstchen architecture - <a href='https://huggingface.co/stabilityai/stable-cascade/blob/main/LICENSE' target='_blank'>non-commercial research license</a></p>"
#if not torch.cuda.is_available():
#    DESCRIPTION += "\n<p>Running on CPU 🥶</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = False
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
USE_TORCH_COMPILE = False
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
#PREVIEW_IMAGES = False
PREVIEW_IMAGES = True

dtype = torch.bfloat16
if torch.cuda.is_available():
    device = "cuda"
elif torch.backends.mps.is_available():
    device = "mps"
    dtype = torch.float32
else:
    device = "cpu"

print(f"device={device}")

if device != "cpu":
    prior_pipeline = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=dtype)#.to(device)
    decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade",  torch_dtype=dtype)#.to(device) 

    if ENABLE_CPU_OFFLOAD:
        if device == "mps":
            prior_pipeline.enable_attention_slicing()
            decoder_pipeline.enable_attention_slicing()
        else:
            prior_pipeline.enable_model_cpu_offload()
            decoder_pipeline.enable_model_cpu_offload()
    else:
        prior_pipeline.to(device)
        decoder_pipeline.to(device)

    if USE_TORCH_COMPILE:
        prior_pipeline.prior = torch.compile(prior_pipeline.prior, mode="reduce-overhead", fullgraph=True)
        decoder_pipeline.decoder = torch.compile(decoder_pipeline.decoder, mode="max-autotune", fullgraph=True)
    
    if PREVIEW_IMAGES:
        previewer = Previewer()
        previewer_state_dict = torch.load("previewer/previewer_v1_100k.pt", map_location=torch.device('cpu'))["state_dict"]
        previewer.load_state_dict(previewer_state_dict)
        def callback_prior(pipeline, step_index, t, callback_kwargs):
            latents = callback_kwargs["latents"]
            output = previewer(latents)
            output = numpy_to_pil(output.clamp(0, 1).permute(0, 2, 3, 1).float().cpu().numpy())
            callback_kwargs["preview_output"] = output
            return callback_kwargs
        callback_steps = 1
    else:
        previewer = None
        callback_prior = None
        callback_steps = None
else:
    prior_pipeline = None
    decoder_pipeline = None


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

#@spaces.GPU
def generate(
    prompt: str,
    negative_prompt: str = "",
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    prior_num_inference_steps: int = 30,
    # prior_timesteps: List[float] = None,
    prior_guidance_scale: float = 4.0,
    decoder_num_inference_steps: int = 12,
    # decoder_timesteps: List[float] = None,
    decoder_guidance_scale: float = 0.0,
    num_images_per_prompt: int = 2,
#    profile: gr.OAuthProfile | None = None,
) -> PIL.Image.Image:

    try:
        previewer.eval().requires_grad_(False).to(device).to(dtype)
    except:
        print("")
    
    #previewer.eval().requires_grad_(False).to(device).to(dtype)
    if device != "cpu":
        prior_pipeline.to(device)
        decoder_pipeline.to(device)

    generator = torch.Generator().manual_seed(seed)
    print("prior_num_inference_steps: ", prior_num_inference_steps)
    prior_output = prior_pipeline(
        prompt=prompt,
        height=height,
        width=width,
        num_inference_steps=prior_num_inference_steps,
        timesteps=DEFAULT_STAGE_C_TIMESTEPS,
        negative_prompt=negative_prompt,
        guidance_scale=prior_guidance_scale,
        num_images_per_prompt=num_images_per_prompt,
        generator=generator,
        #callback_on_step_end=callback_prior,
        #callback_on_step_end_tensor_inputs=['latents']
    )
    if PREVIEW_IMAGES:
        for _ in range(len(DEFAULT_STAGE_C_TIMESTEPS)):
            try:
                r = next(prior_output)
                if isinstance(r, list):
                    yield r[0]
            except:
                print("")
        try:
            prior_output = r
        except:
            print("")

    decoder_output = decoder_pipeline(
        image_embeddings=prior_output.image_embeddings,
        prompt=prompt,
        num_inference_steps=decoder_num_inference_steps,
        # timesteps=decoder_timesteps,
        guidance_scale=decoder_guidance_scale,
        negative_prompt=negative_prompt,
        generator=generator,
        output_type="pil",
    ).images
#    #Save images
#    for image in decoder_output:
#        user_history.save_image(
#            profile=profile,
#            image=image,
#            label=prompt,
#            metadata={
#                "negative_prompt": negative_prompt,
#                "seed": seed,
#                "width": width,
#                "height": height,
#                "prior_guidance_scale": prior_guidance_scale,
#                "decoder_num_inference_steps": decoder_num_inference_steps,
#                "decoder_guidance_scale": decoder_guidance_scale,
#                "num_images_per_prompt": num_images_per_prompt,
#            },
#        )

    yield decoder_output[0]


examples = [
    "An astronaut riding a green horse",
    "A mecha robot in a favela by Tarsila do Amaral",
    "The spirit of a Tamagotchi wandering in the city of Los Angeles",
    "A delicious feijoada ramen dish"
]

with gr.Blocks() as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Image(label="Result", show_label=False)
    with gr.Accordion("Advanced options", open=False):
        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a Negative Prompt",
        )

        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=1024,
                maximum=MAX_IMAGE_SIZE,
                step=512,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=1024,
                maximum=MAX_IMAGE_SIZE,
                step=512,
                value=1024,
            )
            num_images_per_prompt = gr.Slider(
                label="Number of Images",
                minimum=1,
                maximum=2,
                step=1,
                value=1,
            )
        with gr.Row():
            prior_guidance_scale = gr.Slider(
                label="Prior Guidance Scale",
                minimum=0,
                maximum=20,
                step=0.1,
                value=4.0,
            )
            prior_num_inference_steps = gr.Slider(
                label="Prior Inference Steps",
                minimum=10,
                maximum=30,
                step=1,
                value=20,
            )

            decoder_guidance_scale = gr.Slider(
                label="Decoder Guidance Scale",
                minimum=0,
                maximum=0,
                step=0.1,
                value=0.0,
            )
            decoder_num_inference_steps = gr.Slider(
                label="Decoder Inference Steps",
                minimum=4,
                maximum=12,
                step=1,
                value=10,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=result,
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    inputs = [
            prompt,
            negative_prompt,
            seed,
            width,
            height,
            prior_num_inference_steps,
            # prior_timesteps,
            prior_guidance_scale,
            decoder_num_inference_steps,
            # decoder_timesteps,
            decoder_guidance_scale,
            num_images_per_prompt,
    ]
    gr.on(
        triggers=[prompt.submit, negative_prompt.submit, run_button.click],
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=inputs,
        outputs=result,
        api_name="run",
    )
    
with gr.Blocks(css="style.css") as demo_with_history:
    with gr.Tab("App"):
        demo.render()
#    with gr.Tab("Past generations"):
#        user_history.render()

if __name__ == "__main__":
    demo_with_history.queue(max_size=20).launch()