stable-cascade / app.py
multimodalart's picture
Update app.py
c1e1bbb verified
raw
history blame
8.54 kB
import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import torch
from typing import List
from diffusers.utils import numpy_to_pil
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
#import user_history
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
DESCRIPTION = "# Stable Cascade"
#DESCRIPTION += "\n<p style=\"text-align: center\"><a href='https://huggingface.co/warp-ai/wuerstchen' target='_blank'>Würstchen</a> is a new fast and efficient high resolution text-to-image architecture and model</p>"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
USE_TORCH_COMPILE = True
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
dtype = torch.float16
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
prior_pipeline = StableCascadePriorPipeline.from_pretrained("diffusers/StableCascade-prior", torch_dtype=torch.bfloat16).to("cuda")
decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained("diffusers/StableCascade-decoder", torch_dtype=torch.bfloat16).to("cuda")
if ENABLE_CPU_OFFLOAD:
prior_pipeline.enable_model_cpu_offload()
decoder_pipeline.enable_model_cpu_offload()
else:
prior_pipeline.to(device)
decoder_pipeline.to(device)
if USE_TORCH_COMPILE:
prior_pipeline.prior = torch.compile(prior_pipeline.prior, mode="reduce-overhead", fullgraph=True)
decoder_pipeline.decoder = torch.compile(decoder_pipeline.decoder, mode="reduce-overhead", fullgraph=True)
if PREVIEW_IMAGES:
pass
# previewer = Previewer()
# previewer.load_state_dict(torch.load("previewer/text2img_wurstchen_b_v1_previewer_100k.pt")["state_dict"])
# previewer.eval().requires_grad_(False).to(device).to(dtype)
# def callback_prior(i, t, latents):
# output = previewer(latents)
# output = numpy_to_pil(output.clamp(0, 1).permute(0, 2, 3, 1).cpu().numpy())
# return output
else:
previewer = None
callback_prior = None
else:
prior_pipeline = None
decoder_pipeline = None
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def generate(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
width: int = 1024,
height: int = 1024,
prior_num_inference_steps: int = 60,
# prior_timesteps: List[float] = None,
prior_guidance_scale: float = 4.0,
decoder_num_inference_steps: int = 12,
# decoder_timesteps: List[float] = None,
decoder_guidance_scale: float = 0.0,
num_images_per_prompt: int = 2,
#profile: gr.OAuthProfile | None = None,
) -> PIL.Image.Image:
generator = torch.Generator().manual_seed(seed)
prior_output = prior_pipeline(
prompt=prompt,
height=height,
width=width,
timesteps=DEFAULT_STAGE_C_TIMESTEPS,
negative_prompt=negative_prompt,
guidance_scale=prior_guidance_scale,
num_images_per_prompt=num_images_per_prompt,
generator=generator,
callback=callback_prior,
)
#if PREVIEW_IMAGES:
# for _ in range(len(DEFAULT_STAGE_C_TIMESTEPS)):
# r = next(prior_output)
# if isinstance(r, list):
# yield r
# prior_output = r
decoder_output = decoder_pipeline(
image_embeddings=prior_output.image_embeddings,
prompt=prompt,
num_inference_steps=decoder_num_inference_steps,
# timesteps=decoder_timesteps,
guidance_scale=decoder_guidance_scale,
negative_prompt=negative_prompt,
generator=generator,
output_type="pil",
).images
# Save images
#for image in decoder_output:
# user_history.save_image(
# profile=profile,
# image=image,
# label=prompt,
# metadata={
# "negative_prompt": negative_prompt,
# "seed": seed,
# "width": width,
# "height": height,
# "prior_guidance_scale": prior_guidance_scale,
# "decoder_num_inference_steps": decoder_num_inference_steps,
# "decoder_guidance_scale": decoder_guidance_scale,
# "num_images_per_prompt": num_images_per_prompt,
# },
# )
yield decoder_output
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
]
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", show_label=False)
with gr.Accordion("Advanced options", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a Negative Prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=1024,
maximum=MAX_IMAGE_SIZE,
step=512,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=1024,
maximum=MAX_IMAGE_SIZE,
step=512,
value=1024,
)
num_images_per_prompt = gr.Slider(
label="Number of Images",
minimum=1,
maximum=2,
step=1,
value=2,
)
with gr.Row():
prior_guidance_scale = gr.Slider(
label="Prior Guidance Scale",
minimum=0,
maximum=20,
step=0.1,
value=4.0,
)
prior_num_inference_steps = gr.Slider(
label="Prior Inference Steps",
minimum=10,
maximum=30,
step=1,
value=25,
)
decoder_guidance_scale = gr.Slider(
label="Decoder Guidance Scale",
minimum=0,
maximum=0,
step=0.1,
value=0.0,
)
decoder_num_inference_steps = gr.Slider(
label="Decoder Inference Steps",
minimum=4,
maximum=12,
step=1,
value=10,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
inputs = [
prompt,
negative_prompt,
seed,
width,
height,
prior_num_inference_steps,
# prior_timesteps,
prior_guidance_scale,
decoder_num_inference_steps,
# decoder_timesteps,
decoder_guidance_scale,
num_images_per_prompt,
]
gr.on(
triggers=[prompt.submit, negative_prompt.submit, run_button.click],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name="run",
)
with gr.Blocks(css="style.css") as demo_with_history:
#with gr.Tab("App"):
demo.render()
#with gr.Tab("Past generations"):
# user_history.render()
if __name__ == "__main__":
demo_with_history.queue(max_size=20).launch()