Spaces:
Build error
Build error
File size: 14,021 Bytes
67d041f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import torch
import math
from argparse import Namespace
from typing import Optional, List, Dict, Union
from tqdm import tqdm
from .Layer import Conv1d, Lambda
class Diffusion(torch.nn.Module):
def __init__(
self,
hyper_parameters: Namespace
):
super().__init__()
self.hp = hyper_parameters
if self.hp.Feature_Type == 'Mel':
self.feature_size = self.hp.Sound.Mel_Dim
elif self.hp.Feature_Type == 'Spectrogram':
self.feature_size = self.hp.Sound.N_FFT // 2 + 1
self.denoiser = Denoiser(
hyper_parameters= self.hp
)
self.timesteps = self.hp.Diffusion.Max_Step
betas = torch.linspace(1e-4, 0.06, self.timesteps)
alphas = 1.0 - betas
alphas_cumprod = torch.cumprod(alphas, axis= 0)
alphas_cumprod_prev = torch.cat([torch.tensor([1.0]), alphas_cumprod[:-1]])
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('alphas_cumprod', alphas_cumprod) # [Diffusion_t]
self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev) # [Diffusion_t]
self.register_buffer('sqrt_alphas_cumprod', alphas_cumprod.sqrt())
self.register_buffer('sqrt_one_minus_alphas_cumprod', (1.0 - alphas_cumprod).sqrt())
self.register_buffer('sqrt_recip_alphas_cumprod', (1.0 / alphas_cumprod).sqrt())
self.register_buffer('sqrt_recipm1_alphas_cumprod', (1.0 / alphas_cumprod - 1.0).sqrt())
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance', torch.maximum(posterior_variance, torch.tensor([1e-20])).log())
self.register_buffer('posterior_mean_coef1', betas * alphas_cumprod_prev.sqrt() / (1.0 - alphas_cumprod))
self.register_buffer('posterior_mean_coef2', (1.0 - alphas_cumprod_prev) * alphas.sqrt() / (1.0 - alphas_cumprod))
def forward(
self,
encodings: torch.Tensor,
features: torch.Tensor= None
):
'''
encodings: [Batch, Enc_d, Enc_t]
features: [Batch, Feature_d, Feature_t]
feature_lengths: [Batch]
'''
if not features is None: # train
diffusion_steps = torch.randint(
low= 0,
high= self.timesteps,
size= (encodings.size(0),),
dtype= torch.long,
device= encodings.device
) # random single step
noises, epsilons = self.Get_Noise_Epsilon_for_Train(
features= features,
encodings= encodings,
diffusion_steps= diffusion_steps,
)
return None, noises, epsilons
else: # inference
features = self.Sampling(
encodings= encodings,
)
return features, None, None
def Sampling(
self,
encodings: torch.Tensor,
):
features = torch.randn(
size= (encodings.size(0), self.feature_size, encodings.size(2)),
device= encodings.device
)
for diffusion_step in reversed(range(self.timesteps)):
features = self.P_Sampling(
features= features,
encodings= encodings,
diffusion_steps= torch.full(
size= (encodings.size(0), ),
fill_value= diffusion_step,
dtype= torch.long,
device= encodings.device
),
)
return features
def P_Sampling(
self,
features: torch.Tensor,
encodings: torch.Tensor,
diffusion_steps: torch.Tensor,
):
posterior_means, posterior_log_variances = self.Get_Posterior(
features= features,
encodings= encodings,
diffusion_steps= diffusion_steps,
)
noises = torch.randn_like(features) # [Batch, Feature_d, Feature_d]
masks = (diffusion_steps > 0).float().unsqueeze(1).unsqueeze(1) #[Batch, 1, 1]
return posterior_means + masks * (0.5 * posterior_log_variances).exp() * noises
def Get_Posterior(
self,
features: torch.Tensor,
encodings: torch.Tensor,
diffusion_steps: torch.Tensor
):
noised_predictions = self.denoiser(
features= features,
encodings= encodings,
diffusion_steps= diffusion_steps
)
epsilons = \
features * self.sqrt_recip_alphas_cumprod[diffusion_steps][:, None, None] - \
noised_predictions * self.sqrt_recipm1_alphas_cumprod[diffusion_steps][:, None, None]
epsilons.clamp_(-1.0, 1.0) # clipped
posterior_means = \
epsilons * self.posterior_mean_coef1[diffusion_steps][:, None, None] + \
features * self.posterior_mean_coef2[diffusion_steps][:, None, None]
posterior_log_variances = \
self.posterior_log_variance[diffusion_steps][:, None, None]
return posterior_means, posterior_log_variances
def Get_Noise_Epsilon_for_Train(
self,
features: torch.Tensor,
encodings: torch.Tensor,
diffusion_steps: torch.Tensor,
):
noises = torch.randn_like(features)
noised_features = \
features * self.sqrt_alphas_cumprod[diffusion_steps][:, None, None] + \
noises * self.sqrt_one_minus_alphas_cumprod[diffusion_steps][:, None, None]
epsilons = self.denoiser(
features= noised_features,
encodings= encodings,
diffusion_steps= diffusion_steps
)
return noises, epsilons
def DDIM(
self,
encodings: torch.Tensor,
ddim_steps: int,
eta: float= 0.0,
temperature: float= 1.0,
use_tqdm: bool= False
):
ddim_timesteps = self.Get_DDIM_Steps(
ddim_steps= ddim_steps
)
sigmas, alphas, alphas_prev = self.Get_DDIM_Sampling_Parameters(
ddim_timesteps= ddim_timesteps,
eta= eta
)
sqrt_one_minus_alphas = (1. - alphas).sqrt()
features = torch.randn(
size= (encodings.size(0), self.feature_size, encodings.size(2)),
device= encodings.device
)
setp_range = reversed(range(ddim_steps))
if use_tqdm:
tqdm(
setp_range,
desc= '[Diffusion]',
total= ddim_steps
)
for diffusion_steps in setp_range:
noised_predictions = self.denoiser(
features= features,
encodings= encodings,
diffusion_steps= torch.full(
size= (encodings.size(0), ),
fill_value= diffusion_steps,
dtype= torch.long,
device= encodings.device
)
)
feature_starts = (features - sqrt_one_minus_alphas[diffusion_steps] * noised_predictions) / alphas[diffusion_steps].sqrt()
direction_pointings = (1.0 - alphas_prev[diffusion_steps] - sigmas[diffusion_steps].pow(2.0)) * noised_predictions
noises = sigmas[diffusion_steps] * torch.randn_like(features) * temperature
features = alphas_prev[diffusion_steps].sqrt() * feature_starts + direction_pointings + noises
return features
# https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py
def Get_DDIM_Steps(
self,
ddim_steps: int,
ddim_discr_method: str= 'uniform'
):
if ddim_discr_method == 'uniform':
ddim_timesteps = torch.arange(0, self.timesteps, self.timesteps // ddim_steps).long()
elif ddim_discr_method == 'quad':
ddim_timesteps = torch.linspace(0, (torch.tensor(self.timesteps) * 0.8).sqrt(), ddim_steps).pow(2.0).long()
else:
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
ddim_timesteps[-1] = self.timesteps - 1
return ddim_timesteps
def Get_DDIM_Sampling_Parameters(self, ddim_timesteps, eta):
alphas = self.alphas_cumprod[ddim_timesteps]
alphas_prev = self.alphas_cumprod_prev[ddim_timesteps]
sigmas = eta * ((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)).sqrt()
return sigmas, alphas, alphas_prev
class Denoiser(torch.nn.Module):
def __init__(
self,
hyper_parameters: Namespace
):
super().__init__()
self.hp = hyper_parameters
if self.hp.Feature_Type == 'Mel':
feature_size = self.hp.Sound.Mel_Dim
elif self.hp.Feature_Type == 'Spectrogram':
feature_size = self.hp.Sound.N_FFT // 2 + 1
self.prenet = torch.nn.Sequential(
Conv1d(
in_channels= feature_size,
out_channels= self.hp.Diffusion.Size,
kernel_size= 1,
w_init_gain= 'relu'
),
torch.nn.Mish()
)
self.step_ffn = torch.nn.Sequential(
Diffusion_Embedding(
channels= self.hp.Diffusion.Size
),
Lambda(lambda x: x.unsqueeze(2)),
Conv1d(
in_channels= self.hp.Diffusion.Size,
out_channels= self.hp.Diffusion.Size * 4,
kernel_size= 1,
w_init_gain= 'relu'
),
torch.nn.Mish(),
Conv1d(
in_channels= self.hp.Diffusion.Size * 4,
out_channels= self.hp.Diffusion.Size,
kernel_size= 1,
w_init_gain= 'linear'
)
)
self.residual_blocks = torch.nn.ModuleList([
Residual_Block(
in_channels= self.hp.Diffusion.Size,
kernel_size= self.hp.Diffusion.Kernel_Size,
condition_channels= self.hp.Encoder.Size + feature_size
)
for _ in range(self.hp.Diffusion.Stack)
])
self.projection = torch.nn.Sequential(
Conv1d(
in_channels= self.hp.Diffusion.Size,
out_channels= self.hp.Diffusion.Size,
kernel_size= 1,
w_init_gain= 'relu'
),
torch.nn.ReLU(),
Conv1d(
in_channels= self.hp.Diffusion.Size,
out_channels= feature_size,
kernel_size= 1
),
)
torch.nn.init.zeros_(self.projection[-1].weight) # This is key factor....
def forward(
self,
features: torch.Tensor,
encodings: torch.Tensor,
diffusion_steps: torch.Tensor
):
'''
features: [Batch, Feature_d, Feature_t]
encodings: [Batch, Enc_d, Feature_t]
diffusion_steps: [Batch]
'''
x = self.prenet(features)
diffusion_steps = self.step_ffn(diffusion_steps) # [Batch, Res_d, 1]
skips_list = []
for residual_block in self.residual_blocks:
x, skips = residual_block(
x= x,
conditions= encodings,
diffusion_steps= diffusion_steps
)
skips_list.append(skips)
x = torch.stack(skips_list, dim= 0).sum(dim= 0) / math.sqrt(self.hp.Diffusion.Stack)
x = self.projection(x)
return x
class Diffusion_Embedding(torch.nn.Module):
def __init__(
self,
channels: int
):
super().__init__()
self.channels = channels
def forward(self, x: torch.Tensor):
half_channels = self.channels // 2 # sine and cosine
embeddings = math.log(10000.0) / (half_channels - 1)
embeddings = torch.exp(torch.arange(half_channels, device= x.device) * -embeddings)
embeddings = x.unsqueeze(1) * embeddings.unsqueeze(0)
embeddings = torch.cat([embeddings.sin(), embeddings.cos()], dim= -1)
return embeddings
class Residual_Block(torch.nn.Module):
def __init__(
self,
in_channels: int,
kernel_size: int,
condition_channels: int
):
super().__init__()
self.in_channels = in_channels
self.condition = Conv1d(
in_channels= condition_channels,
out_channels= in_channels * 2,
kernel_size= 1
)
self.diffusion_step = Conv1d(
in_channels= in_channels,
out_channels= in_channels,
kernel_size= 1
)
self.conv = Conv1d(
in_channels= in_channels,
out_channels= in_channels * 2,
kernel_size= kernel_size,
padding= kernel_size // 2
)
self.projection = Conv1d(
in_channels= in_channels,
out_channels= in_channels * 2,
kernel_size= 1
)
def forward(
self,
x: torch.Tensor,
conditions: torch.Tensor,
diffusion_steps: torch.Tensor
):
residuals = x
conditions = self.condition(conditions)
diffusion_steps = self.diffusion_step(diffusion_steps)
x = self.conv(x + diffusion_steps) + conditions
x_a, x_b = x.chunk(chunks= 2, dim= 1)
x = x_a.sigmoid() * x_b.tanh()
x = self.projection(x)
x, skips = x.chunk(chunks= 2, dim= 1)
return (x + residuals) / math.sqrt(2.0), skips |