|
import json |
|
import os |
|
import shutil |
|
import requests |
|
|
|
import gradio as gr |
|
from huggingface_hub import Repository |
|
from text_generation import Client |
|
|
|
from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css |
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
|
|
API_URL = "https://api-inference.huggingface.co/models/codellama/CodeLlama-13b-hf" |
|
|
|
FIM_PREFIX = "<PRE> " |
|
FIM_MIDDLE = " <MID>" |
|
FIM_SUFFIX = " <SUF>" |
|
|
|
FIM_INDICATOR = "<FILL_ME>" |
|
|
|
EOS_STRING = "</s>" |
|
EOT_STRING = "<EOT>" |
|
|
|
theme = gr.themes.Monochrome( |
|
primary_hue="indigo", |
|
secondary_hue="blue", |
|
neutral_hue="slate", |
|
radius_size=gr.themes.sizes.radius_sm, |
|
font=[ |
|
gr.themes.GoogleFont("Open Sans"), |
|
"ui-sans-serif", |
|
"system-ui", |
|
"sans-serif", |
|
], |
|
) |
|
|
|
client = Client( |
|
API_URL, |
|
headers={"Authorization": f"Bearer {HF_TOKEN}"}, |
|
) |
|
|
|
|
|
def generate( |
|
prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, |
|
): |
|
|
|
temperature = float(temperature) |
|
if temperature < 1e-2: |
|
temperature = 1e-2 |
|
top_p = float(top_p) |
|
fim_mode = False |
|
|
|
generate_kwargs = dict( |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
seed=42, |
|
) |
|
|
|
if FIM_INDICATOR in prompt: |
|
fim_mode = True |
|
try: |
|
prefix, suffix = prompt.split(FIM_INDICATOR) |
|
except: |
|
raise ValueError(f"Only one {FIM_INDICATOR} allowed in prompt!") |
|
prompt = f"{FIM_PREFIX}{prefix}{FIM_SUFFIX}{suffix}{FIM_MIDDLE}" |
|
|
|
|
|
stream = client.generate_stream(prompt, **generate_kwargs) |
|
|
|
|
|
if fim_mode: |
|
output = prefix |
|
else: |
|
output = prompt |
|
|
|
previous_token = "" |
|
for response in stream: |
|
if any([end_token in response.token.text for end_token in [EOS_STRING, EOT_STRING]]): |
|
if fim_mode: |
|
output += suffix |
|
yield output |
|
return output |
|
print("output", output) |
|
else: |
|
return output |
|
else: |
|
output += response.token.text |
|
previous_token = response.token.text |
|
yield output |
|
return output |
|
|
|
|
|
examples = [ |
|
"X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1)\n\n# Train a logistic regression model, predict the labels on the test set and compute the accuracy score", |
|
"// Returns every other value in the array as a new array.\nfunction everyOther(arr) {", |
|
"Poor English: She no went to the market. Corrected English:", |
|
"def alternating(list1, list2):\n results = []\n for i in range(min(len(list1), len(list2))):\n results.append(list1[i])\n results.append(list2[i])\n if len(list1) > len(list2):\n <FILL_ME>\n else:\n results.extend(list2[i+1:])\n return results", |
|
"def remove_non_ascii(s: str) -> str:\n \"\"\" <FILL_ME>\nprint(remove_non_ascii('afkdj$$('))", |
|
] |
|
|
|
|
|
def process_example(args): |
|
for x in generate(args): |
|
pass |
|
return x |
|
|
|
|
|
css = ".generating {visibility: hidden}" |
|
|
|
monospace_css = """ |
|
#q-input textarea { |
|
font-family: monospace, 'Consolas', Courier, monospace; |
|
} |
|
""" |
|
|
|
|
|
css += share_btn_css + monospace_css + ".gradio-container {color: black}" |
|
|
|
description = """ |
|
<div style="text-align: center;"> |
|
<h1> 🦙 Code Llama Playground</h1> |
|
</div> |
|
<div style="text-align: left;"> |
|
<p>This is a demo to generate text and code with the following <a href="https://huggingface.co/codellama/CodeLlama-13b-hf">Code Llama model (13B)</a>. Please note that this model is not designed for instruction purposes but for code completion. If you're looking for instruction or want to chat with a fine-tuned model, you can use [this demo instead](https://huggingface.co/spaces/codellama/codellama-13b-chat). You can learn more about the model in the <a href="https://huggingface.co/blog/codellama/">blog post<\a> or <a href="https://huggingface.co/papers/2308.12950">paper<\a></p> |
|
</div> |
|
""" |
|
|
|
with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo: |
|
with gr.Column(): |
|
gr.Markdown(description) |
|
with gr.Row(): |
|
with gr.Column(): |
|
instruction = gr.Textbox( |
|
placeholder="Enter your code here", |
|
lines=5, |
|
label="Input", |
|
elem_id="q-input", |
|
) |
|
submit = gr.Button("Generate", variant="primary") |
|
output = gr.Code(elem_id="q-output", lines=30, label="Output") |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Accordion("Advanced settings", open=False): |
|
with gr.Row(): |
|
column_1, column_2 = gr.Column(), gr.Column() |
|
with column_1: |
|
temperature = gr.Slider( |
|
label="Temperature", |
|
value=0.1, |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.05, |
|
interactive=True, |
|
info="Higher values produce more diverse outputs", |
|
) |
|
max_new_tokens = gr.Slider( |
|
label="Max new tokens", |
|
value=256, |
|
minimum=0, |
|
maximum=8192, |
|
step=64, |
|
interactive=True, |
|
info="The maximum numbers of new tokens", |
|
) |
|
with column_2: |
|
top_p = gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
value=0.90, |
|
minimum=0.0, |
|
maximum=1, |
|
step=0.05, |
|
interactive=True, |
|
info="Higher values sample more low-probability tokens", |
|
) |
|
repetition_penalty = gr.Slider( |
|
label="Repetition penalty", |
|
value=1.05, |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
interactive=True, |
|
info="Penalize repeated tokens", |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=[instruction], |
|
cache_examples=False, |
|
fn=process_example, |
|
outputs=[output], |
|
) |
|
|
|
submit.click( |
|
generate, |
|
inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty], |
|
outputs=[output], |
|
) |
|
demo.queue(concurrency_count=16).launch(debug=True) |