Spaces:
Runtime error
Runtime error
update files
Browse files- README.md +4 -4
- app.py +62 -0
- requirements.txt +2 -0
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
title: Python To Text
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.0.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
1 |
---
|
2 |
title: Python To Text
|
3 |
+
emoji: 🪞
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.0.24
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline
|
3 |
+
|
4 |
+
|
5 |
+
title = "Python to Text Converter [WIP]"
|
6 |
+
description = "This is a space to convert Python code into english text explaining what it does using [codeparrot-small-code-to-text](codeparrot-small-code-to-text),\
|
7 |
+
a code generation model for Python finetuned on [github-jupyter-code-to-text](https://huggingface.co/datasets/codeparrot/github-jupyter-text) a dataset Python code followed by a doctring explaining it, the data was extracted from Jupyter notebooks."
|
8 |
+
example = [
|
9 |
+
["example1", 65, 0.6, 42],
|
10 |
+
["example2", 60, 0.6, 42],
|
11 |
+
["example3", 87, 0.6, 42],
|
12 |
+
]
|
13 |
+
|
14 |
+
# change model to the finetuned one
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained("codeparrot/codeparrot-small")
|
16 |
+
model = AutoModelForCausalLM.from_pretrained("codeparrot/codeparrot-small")
|
17 |
+
|
18 |
+
def make_doctring(gen_prompt):
|
19 |
+
return gen_prompt + f"\n\n\"\"\"\nExplanation:"
|
20 |
+
|
21 |
+
def code_generation(gen_prompt, max_tokens, temperature=0.6, seed=42):
|
22 |
+
set_seed(seed)
|
23 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
24 |
+
prompt = make_doctring(gen_prompt)
|
25 |
+
generated_text = pipe(prompt, do_sample=True, top_p=0.95, temperature=temperature, max_new_tokens=max_tokens)[0]['generated_text']
|
26 |
+
return generated_text
|
27 |
+
|
28 |
+
|
29 |
+
iface = gr.Interface(
|
30 |
+
fn=code_generation,
|
31 |
+
inputs=[
|
32 |
+
gr.Textbox(lines=10, label="Python code"),
|
33 |
+
gr.inputs.Slider(
|
34 |
+
minimum=8,
|
35 |
+
maximum=256,
|
36 |
+
step=1,
|
37 |
+
default=8,
|
38 |
+
label="Number of tokens to generate",
|
39 |
+
),
|
40 |
+
gr.inputs.Slider(
|
41 |
+
minimum=0,
|
42 |
+
maximum=2.5,
|
43 |
+
step=0.1,
|
44 |
+
default=0.6,
|
45 |
+
label="Temperature",
|
46 |
+
),
|
47 |
+
gr.inputs.Slider(
|
48 |
+
minimum=0,
|
49 |
+
maximum=1000,
|
50 |
+
step=1,
|
51 |
+
default=42,
|
52 |
+
label="Random seed to use for the generation"
|
53 |
+
)
|
54 |
+
],
|
55 |
+
outputs=gr.Textbox(label="Predicted explanation", lines=10),
|
56 |
+
examples=example,
|
57 |
+
layout="horizontal",
|
58 |
+
theme="peach",
|
59 |
+
description=description,
|
60 |
+
title=title
|
61 |
+
)
|
62 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
transformers==4.19.0
|
2 |
+
torch==1.11.0
|