File size: 6,240 Bytes
16b19cc e876713 16b19cc 570016e 16b19cc d827a2c 4230709 16b19cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import pipeline
import numpy as np
import pandas as pd
import matplotlib.cm as cm
import html
from torch.nn.functional import softmax
import torch
from matplotlib.colors import LinearSegmentedColormap
cdict = {'red': [[0.0, 0.8, 0.8],
[1.0, 1.0, 1.0]],
'green': [[0.0, 0.0, 0.0],
[1.0, 1.0, 1.0]],
'blue': [[0.0, 0.0, 0.0],
[1.0, 1.0, 1.0]],
'alpha':[[0.0, 1.0, 1.0],
[1.0, 0.0, 0.0]]}
cmap = LinearSegmentedColormap('codemap', segmentdata=cdict, N=256)
def value2rgba(x, cmap=cmap, alpha_mult=1.0):
c = cmap(x)
rgb = (np.array(c[:-1]) * 255).astype(int)
a = c[-1] * alpha_mult
return tuple(rgb.tolist() + [a])
def highlight_token_scores(tokens, scores, sep=' ', **kwargs):
html_code,spans = [''], []#['<span style="font-family: monospace;">'], []
for t, s in zip(tokens, scores):
t = html.escape(t)
t = t.replace("\n", " \n")
c = str(value2rgba(s, alpha_mult=0.8, **kwargs))
spans.append(f'<span title="{s:.3f}" style="background-color: rgba{c};">{t}</span>')
html_code.append(sep.join(spans))
return '<p><code><FONT COLOR=black>' + ''.join(html_code) + '</pre></p>'
def color_dataframe(row):
styles = []
c = str(value2rgba(row["scores"], alpha_mult=0.8))
for key in row.index:
if key in {"tokens", "scores"}:
styles.append(f"background-color: rgba{c}")
else:
styles.append(f"background-color: None")
return styles
@st.cache(allow_output_mutation=True)
def load_tokenizer(model_ckpt):
return AutoTokenizer.from_pretrained(model_ckpt)
@st.cache(allow_output_mutation=True)
def load_model(model_ckpt):
model = AutoModelForCausalLM.from_pretrained(model_ckpt)
return model
def calculate_scores(probs, token_ids):
probs = probs[:-1]
token_ids = token_ids[1:]
sorted_ids = np.argsort(probs, axis=-1)[:, ::-1]
sorted_probs = np.sort(probs, axis=-1)[:, ::-1]
selected_token_mask = sorted_ids == token_ids[:, None]
masked_probs = np.ma.array(sorted_probs, mask=~selected_token_mask)
token_probs = masked_probs.sum(axis=1).data
masked_indices = np.cumsum(selected_token_mask[:, ::-1], axis=-1)[:, ::-1].astype(bool)
masked_probs = np.ma.array(sorted_probs, mask=~masked_indices)
token_rank = masked_indices.sum(axis=-1)
cumulative_probs = masked_probs.sum(axis=1).data/token_rank
scores = token_probs/cumulative_probs
return [1.] + list(scores), sorted_ids
def calculate_loss(logits, labels):
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
norm_loss = 1 - (loss/torch.max(loss))
return [1.] + list(norm_loss.numpy())
default_code = """\
from torch import nn
from transformers import Model
class Transformer:
def __init__(config):
self.model = Model(config)
def forward(inputs):
return self.model(inputs)"""
solution_code = """\
from torch import nn
from transformers import Model
class Transformer(nn.Module):
def __init__(self, config):
super(Transformer, self).__init__()
self.config = config
self.model = Model(config)
def forward(self, inputs):
return self.model(inputs)
"""
st.set_page_config(page_icon=':parrot:', layout="wide")
np.random.seed(42)
model_ckpt = "codeparrot/codeparrot-small"
tokenizer = load_tokenizer(model_ckpt)
model = load_model(model_ckpt)
st.markdown("<h1 style='text-align: center;'>CodeParrot 🦜</h1>", unsafe_allow_html=True)
st.markdown('##')
col1, col2 = st.columns(2)
col1.subheader("Edit code")
code = col1.text_area(label="", value=default_code, height=220,).strip()
inputs = tokenizer(code, return_tensors='pt')
token_list = [tokenizer.decode(t) for t in inputs["input_ids"][0]]
with torch.no_grad():
logits = model(input_ids=inputs["input_ids"]).logits[0]
probs = softmax(logits, dim=-1)
loss = calculate_loss(logits, inputs["input_ids"][0])
norm_probs, sorted_token_ids = calculate_scores(probs.numpy(), inputs["input_ids"][0].numpy())
if len(inputs['input_ids'])>1024:
st.warning("Your input is longer than the maximum 1024 tokens and will be truncated.")
st.sidebar.title("Info:")
st.sidebar.markdown("This demo uses CodeParrot to highlight the parts of code with low probability. Since CodeParrot is an autoregressive model the tokens at the beginning tend to have a lower probability. E.g. the model can't know what you want to import because it has no access to information later in the code. However, as you can see in the example on the right it still can highlight bugs or unconventional naming.\n\nAt the bottom of the page is an example of how a better solution might look like. Try to copy paste it and press **CMD + Enter** to update the highlighting.")
st.sidebar.title("Settings:")
if st.sidebar.radio("Highlight mode:", ["Probability heuristics", "Scaled loss per token"]) == "Probability heuristics":
scores = norm_probs
else:
scores = loss
suggestion_threshold = st.sidebar.slider("Suggestion threshold", 0.0, 1.0, 0.2)
col2.subheader("Highlighted code")
col2.markdown('##')
html_string = highlight_token_scores(token_list, scores, sep="")
col2.markdown(html_string, unsafe_allow_html=True)
col2.markdown('##')
st.subheader("Model suggestions")
top_k = {}
for i in range(5):
top_k[f"top-{i+1}"] = ["No prediction for first token"] + [repr(tokenizer.decode(idx)) for idx in sorted_token_ids[:, i]]
df = pd.DataFrame({"tokens": [repr(t) for t in token_list], "scores": scores, **top_k})
df.index.name = "position"
df_filter = df.loc[df["scores"]<=suggestion_threshold]
df_filter.reset_index(inplace=True)
df_filter = df_filter[["tokens", "scores", "position", "top-1", "top-2", "top-3", "top-4", "top-5",]]
df_filter = df_filter.style.apply(color_dataframe, axis=1)
st.dataframe(df_filter)
st.markdown('##')
st.subheader("Possible solution")
st.code(solution_code) |