Spaces:
Running
Running
File size: 10,686 Bytes
35378f6 923aff9 35378f6 923aff9 35378f6 923aff9 35378f6 923aff9 35378f6 923aff9 35378f6 923aff9 35378f6 923aff9 35378f6 923aff9 35378f6 923aff9 b345ff4 923aff9 35378f6 4f18cc8 35378f6 923aff9 69c36b6 923aff9 69c36b6 35378f6 923aff9 35378f6 923aff9 35378f6 923aff9 35378f6 923aff9 35378f6 923aff9 35378f6 923aff9 35378f6 923aff9 35378f6 923aff9 35378f6 923aff9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import pandas as pd
import plotly.express as px
import requests
import json
import gradio as gr
from src.assets.text_content import SHORT_NAMES, TEXT_NAME, MULTIMODAL_NAME
from src.leaderboard_utils import get_github_data
def plotly_plot(df: pd.DataFrame, list_op: list, list_co: list,
show_all: list, show_names: list, show_legend: list,
mobile_view: list):
"""
Takes in a list of models for a plotly plot
Args:
df: A dummy dataframe of latest version
list_op: The list of open source models to show in the plot, updated from frontend
list_co: The list of commercial models to show in the plot, updated from frontend
show_all: Either [] or ["Show All Models"] - toggle view to plot all models
show_names: Either [] or ["Show Names"] - toggle view to show model names on plot
show_legend: Either [] or ["Show Legend"] - toggle view to show legend on plot
mobile_view: Either [] or ["Mobile View"] - toggle view to for smaller screens
Returns:
Fig: plotly figure of % played v/s quality score
"""
LIST = list_op + list_co
# Get list of all models and append short names column to df
list_columns = list(df.columns)
ALL_LIST = list(df[list_columns[0]].unique())
short_names = label_map(ALL_LIST)
list_short_names = list(short_names.values())
df["Short"] = list_short_names
if show_all:
LIST = ALL_LIST
# Filter dataframe based on the provided list of models
df = df[df[list_columns[0]].isin(LIST)]
if show_names:
fig = px.scatter(df, x=list_columns[2], y=list_columns[3], color=list_columns[0], symbol=list_columns[0],
color_discrete_map={"category1": "blue", "category2": "red"},
hover_name=list_columns[0], template="plotly_white", text="Short")
fig.update_traces(textposition='top center')
else:
fig = px.scatter(df, x=list_columns[2], y=list_columns[3], color=list_columns[0], symbol=list_columns[0],
color_discrete_map={"category1": "blue", "category2": "red"},
hover_name=list_columns[0], template="plotly_white")
if not show_legend:
fig.update_layout(showlegend=False)
fig.update_layout(
xaxis_title='% Played',
yaxis_title='Quality Score',
title='Overview of benchmark results',
height=1000
)
fig.update_xaxes(range=[-5, 105])
fig.update_yaxes(range=[-5, 105])
if mobile_view:
fig.update_layout(height=300)
if mobile_view and show_legend:
fig.update_layout(height=450)
fig.update_layout(legend=dict(
yanchor="bottom",
y=-5.52,
xanchor="left",
x=0.01
))
fig.update_layout(
xaxis_title="",
yaxis_title="",
title="% Played v/s Quality Score"
)
return fig
def shorten_model_name(full_name):
# Split the name into parts
parts = full_name.split('-')
# Process the name parts to keep only the parts with digits (model sizes and versions)
short_name_parts = [part for part in parts if any(char.isdigit() for char in part)]
if len(parts) == 1:
short_name = ''.join(full_name[0:min(3, len(full_name))])
else:
# Join the parts to form the short name
short_name = '-'.join(short_name_parts)
# Remove any leading or trailing hyphens
short_name = full_name[0] + '-' + short_name.strip('-')
return short_name
def label_map(model_list: list) -> dict:
"""
Generate a map from long names to short names, to plot them in frontend graph
Define the short names in src/assets/text_content.py
Args:
model_list: A list of long model names
Returns:
short_name: A dict from long to short name
"""
short_names = {}
for model_name in model_list:
if model_name in SHORT_NAMES:
short_name = SHORT_NAMES[model_name]
else:
short_name = shorten_model_name(model_name)
# Define the short name and indicate both models are same
short_names[model_name] = short_name
return short_names
def split_models(model_list: list):
"""
Split the models into open source and commercial
"""
open_models = []
commercial_models = []
open_backends = {"huggingface_local", "huggingface_multimodal", "openai_compatible"} # Define backends considered as open
# Load model registry data from main repo
model_registry_url = "https://raw.githubusercontent.com/clp-research/clembench/main/backends/model_registry.json"
response = requests.get(model_registry_url)
if response.status_code == 200:
json_data = json.loads(response.text)
# Classify as Open or Commercial based on the defined backend in the model registry
backend_mapping = {}
for model_name in model_list:
model_prefix = model_name.split('-')[0] # Get the prefix part of the model name
for entry in json_data:
if entry["model_name"].startswith(model_prefix):
backend = entry["backend"]
# Classify based on backend
if backend in open_backends:
open_models.append(model_name)
else:
commercial_models.append(model_name)
break
else:
print(f"Failed to read JSON file: Status Code : {response.status_code}")
open_models.sort(key=lambda o: o.upper())
commercial_models.sort(key=lambda c: c.upper())
# Add missing model from the model_registry
if "dolphin-2.5-mixtral-8x7b" in model_list:
open_models.append("dolphin-2.5-mixtral-8x7b")
return open_models, commercial_models
"""
Update Functions, for when the leaderboard selection changes
"""
def update_open_models(leaderboard: str = TEXT_NAME):
"""
Change the checkbox group of Open Models based on the leaderboard selected
Args:
leaderboard: Selected leaderboard from the frontend [Default - Text Leaderboard]
Return:
Updated checkbox group for Open Models, based on the leaderboard selected
"""
github_data = get_github_data()
leaderboard_data = github_data["text" if leaderboard == TEXT_NAME else "multimodal"][0]
models = leaderboard_data.iloc[:, 0].unique().tolist()
open_models, commercial_models = split_models(models)
return gr.CheckboxGroup(
open_models,
value=[],
elem_id="value-select-1",
interactive=True,
)
def update_closed_models(leaderboard: str = TEXT_NAME):
"""
Change the checkbox group of Closed Models based on the leaderboard selected
Args:
leaderboard: Selected leaderboard from the frontend [Default - Text Leaderboard]
Return:
Updated checkbox group for Closed Models, based on the leaderboard selected
"""
github_data = get_github_data()
leaderboard_data = github_data["text" if leaderboard == TEXT_NAME else "multimodal"][0]
models = leaderboard_data.iloc[:, 0].unique().tolist()
open_models, commercial_models = split_models(models)
return gr.CheckboxGroup(
commercial_models,
value=[],
elem_id="value-select-2",
interactive=True,
)
def get_plot_df(leaderboard: str = TEXT_NAME) -> pd.DataFrame:
"""
Get the DataFrame for plotting based on the selected leaderboard.
Args:
leaderboard: Selected leaderboard.
Returns:
DataFrame with model data.
"""
github_data = get_github_data()
return github_data["text" if leaderboard == TEXT_NAME else "multimodal"][0]
"""
Reset Functions for when the Leaderboard selection changes
"""
def reset_show_all():
return gr.CheckboxGroup(
["Select All Models"],
label="Show plot for all models π€",
value=[],
elem_id="value-select-3",
interactive=True,
)
def reset_show_names():
return gr.CheckboxGroup(
["Show Names"],
label="Show names of models on the plot π·οΈ",
value=[],
elem_id="value-select-4",
interactive=True,
)
def reset_show_legend():
return gr.CheckboxGroup(
["Show Legend"],
label="Show legend on the plot π‘",
value=[],
elem_id="value-select-5",
interactive=True,
)
def reset_mobile_view():
return gr.CheckboxGroup(
["Mobile View"],
label="View plot on smaller screens π±",
value=[],
elem_id="value-select-6",
interactive=True,
)
if __name__ == '__main__':
mm_model_list = ['gpt-4o-2024-05-13', 'gpt-4-1106-vision-preview', 'claude-3-opus-20240229', 'gemini-1.5-pro-latest',
'gemini-1.5-flash-latest', 'llava-v1.6-34b-hf', 'llava-v1.6-vicuna-13b-hf', 'idefics-80b-instruct',
'llava-1.5-13b-hf', 'idefics-9b-instruct']
text_model_list = ['vicuna-33b-v1.3', 'gpt-4-0125-preview', 'gpt-4-turbo-2024-04-09', 'claude-3-5-sonnet-20240620', 'gpt-4-1106-preview',
'gpt-4-0613', 'gpt-4o-2024-05-13', 'claude-3-opus-20240229', 'gemini-1.5-pro-latest',
'Meta-Llama-3-70B-Instruct-hf', 'claude-2.1', 'gemini-1.5-flash-latest', 'claude-3-sonnet-20240229',
'Qwen1.5-72B-Chat', 'mistral-large-2402', 'gpt-3.5-turbo-0125', 'gemini-1.0-pro', 'command-r-plus', 'openchat_3.5',
'claude-3-haiku-20240307', 'sheep-duck-llama-2-70b-v1.1', 'Meta-Llama-3-8B-Instruct-hf', 'openchat-3.5-1210',
'WizardLM-70b-v1.0', 'openchat-3.5-0106', 'Qwen1.5-14B-Chat', 'mistral-medium-2312', 'Qwen1.5-32B-Chat',
'codegemma-7b-it', 'dolphin-2.5-mixtral-8x7b', 'CodeLlama-34b-Instruct-hf', 'command-r', 'gemma-1.1-7b-it',
'SUS-Chat-34B', 'Mixtral-8x22B-Instruct-v0.1', 'tulu-2-dpo-70b', 'Nous-Hermes-2-Mixtral-8x7B-SFT',
'WizardLM-13b-v1.2', 'Mistral-7B-Instruct-v0.2', 'Yi-34B-Chat', 'Mixtral-8x7B-Instruct-v0.1',
'Mistral-7B-Instruct-v0.1', 'Yi-1.5-34B-Chat', 'vicuna-13b-v1.5', 'Yi-1.5-6B-Chat', 'Starling-LM-7B-beta',
'sheep-duck-llama-2-13b', 'Yi-1.5-9B-Chat', 'gemma-1.1-2b-it', 'Qwen1.5-7B-Chat', 'gemma-7b-it',
'llama-2-70b-chat-hf', 'Qwen1.5-0.5B-Chat', 'Qwen1.5-1.8B-Chat']
om, cm = split_models(mm_model_list)
print("Open")
print(om)
print("Closed")
print(cm)
|