clem-leaderboard / src /version_utils.py
sherzod-hakimov's picture
adapted to the new changes in the benchmark list
fa0181f
## REQUIRED OUTPUT ###
# A list of version names -> v1.6, v.6_multimodal, v1.6_quantized, v1.5, v0.9, etc......
# A corresponding DataFrame?
import requests
from datetime import datetime
import pandas as pd
import json
from io import StringIO
from src.leaderboard_utils import process_df
from src.assets.text_content import REPO
def get_versions_data():
"""
Read and process data from CSV files of all available versions hosted on GitHub. - https://github.com/clembench/clembench-runs
Returns:
versions_data:
-
"""
base_repo = REPO
json_url = base_repo + "benchmark_runs.json"
response = requests.get(json_url)
# Check if the JSON file request was successful
if response.status_code != 200:
print(f"Failed to read JSON file: Status Code: {response.status_code}")
return None, None, None, None
json_data = response.json()
versions = json_data['versions']
version_names = sorted(
[ver['version'] for ver in versions],
key=lambda v: list(map(int, v[1:].split('_')[0].split('.'))),
reverse=True
)
# Get Last updated date of the latest version
latest_version = version_names[0]
latest_date = next(
ver['date'] for ver in versions if ver['version'] == latest_version
)
formatted_date = datetime.strptime(latest_date, "%Y-%m-%d").strftime("%d %b %Y")
# Get Versions data
versions_data = {"latest": latest_version, "date": formatted_date}
# Collect Dataframes
dfs = []
for version in version_names:
text_url = f"{base_repo}{version}/results.csv"
mm_url = f"{base_repo}{version}_multimodal/results.csv"
quant_url = f"{base_repo}{version}_quantized/results.csv"
# Text Data
response = requests.get(text_url)
if response.status_code == 200:
df = pd.read_csv(StringIO(response.text))
df = process_df(df)
df = df.sort_values(by=df.columns[1], ascending=False) # Sort by clemscore column
versions_data[version] = df
# Multimodal Data
mm_response = requests.get(mm_url)
if mm_response.status_code == 200:
mm_df = pd.read_csv(StringIO(mm_response.text))
mm_df = process_df(mm_df)
mm_df = mm_df.sort_values(by=mm_df.columns[1], ascending=False) # Sort by clemscore column
versions_data[version+"_multimodal"] = mm_df
# Multimodal Data
q_response = requests.get(quant_url)
if q_response.status_code == 200:
q_df = pd.read_csv(StringIO(q_response.text))
q_df = process_df(q_df)
q_df = q_df.sort_values(by=q_df.columns[1], ascending=False) # Sort by clemscore column
versions_data[version + "_quantized"] = q_df
return versions_data
if __name__ == "__main__":
versions_data = get_versions_data()
print(versions_data.keys())